• Title/Summary/Keyword: Toluene Analogs

Search Result 5, Processing Time 0.025 seconds

Bioluminescence Activity of Toluene Analogs by Alginate-immobilized Pseudomonas putida mt-2 KG1206 (고정화한 유전자 재조합 균주 Pseudomonas putida mt-2 KG1206의 톨루엔 계열 화합물에 대한 생물발광 활성 조사)

  • Kong, In-Chul;Jung, Hong-Kyung;Ko, Kyung-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.147-152
    • /
    • 2009
  • In this study, the applicability of alginate-immobilized Pseudomonas putida mt-2 KG1206 on the environments, contaminated with toluene analogs was conducted. Genetically engineered strain KG1206 produces light by direct (m-toluate, benzoate) and indirect (toluene, xylenes) inducers. The protocol for the alginate-immobilization was determined in terms of the cell to alginate ratio, solution, proper number of alginate beads, and other conditions. Maximum bioluminescences of five chemicals by immobilized strain were generally observed in following orders: m-toluate > p-xylene > toluene > o-xylene > m-xylene. In relationship between bioluminescence activity and inducer reduction, initial m-toluate (5 mM) in solution was removed approximately 48% of initial at 5 h exposure, showing continuous decrease of inducer chemical in solution. These results of study with alginate-immobilized beads would be useful, especially, for biomonitoring of contaminated environments with specific compounds, such as petroleum hydrocarbon compounds including toluene analogs.

Effect of Bioluminescence Stimulating Agent of the Genetically Engineered Strain KG1206 on the Monitoring of the Petroleum Hydrocarbon Contaminated Groundwater Samples (발광유전자 재조합 균주 활성 촉진 조건이 석유계 탄화수소 오염지하수 모니터링에 미치는 영향)

  • Ko, Kyung-Seok;Kong, In-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.79-84
    • /
    • 2008
  • This paper describes the application of bioluminescence stimulating agents on a genetically engineered microorganism, Pseudomonas putida mt-2 KG1206, to monitor toluene analogs using in groundwater samples from petroleum hydrocarbon contaminated sites. The maximum bioluminescent response with pure chemicals followed in the order: m-methyl benzyl alchohol > m-toluate > toluene > m-xylene > benzoate > p-xylene > o-xylene. Generally, the bioluminescence production of strain mixed with groundwater samples was dependent on the contaminated total inducer concentrations. However, few samples showed opposite results, where these phenomena may be caused by the complexicity of environmental samples. Two chemicals, SL(sodium lactate) and KNO$_3$, were tested to determine a better bioluminescence stimulant. Both chemicals stimulate the bioluminescence activity of strain KG1206, however, a slightly high bioluminescence was observed with nitrogen chemical. This selected stimulant was then tested on samples collected from contaminated groundwater samples. The bioluminescence activity of all samples mixed with the strain was stimulated with KNO$_3$ amendment. This suggests that the low bioluminescence activity exhibited by the environmental groundwater samples can be stimulated by amending the culture with a proper agent, such as nitrogen compound. These findings would be useful, especially, when strain was used to monitor the groundwater samples contaminated with low inducer contaminants. Overall, the results of this study found the ability of bioluminescence producing bacteria to biosensor a specific group of environmental contaminants, and suggest the potential for more efficient preliminary application of this engineered strain in a field-ready bioassay.

Detection of m-toluate in Soils using Bioluminescence Producing Recombinant Bacteria (유전자 재조합 발광균주를 이용한 토양 오염원 m-toluate 탐지)

  • Kong, In-Chul;Kim, Myung-Hee;Jung, Yun-Ho;Ko, Kyung-Seok;Kim, Jae-Gon;Shin, Sung-Chun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.507-512
    • /
    • 2005
  • This research focuses on the development and application of a method for the detection of m-toluate in soils using a genetically engineered bioluminescent bacteria, Pseudomonas putida mt-2 KG1206. KG1206 produces light by direct (m-toluate and benzoate) and indirect (toluene analogs) inducers. For detection of m-toluate in soil system, 9.9 mL strain was amended with 0.1 mL soil ethanol extractant. A high correlation ($r^2>0.97$) was observed between bioluminescence and m-toluate concentration. The unknown concentrations of m-toluate in soil samples were pre-determined using a method developed based on bioluminescence activity of strain with extracted inducers. Values between by LC analysis and bioluminescence activity show moderate statistical results. These results demonstrate the feasibility of recombinant bioluminescent microorganism, engineered to generate a quantifiable bioluminescence signal in response to specific pollutants, may serve as combined sensing and reporting tools in environmental monitoring.

Effects of Heavy Metals on Biomonitoring using Recombinant Bioluminescence Bacteria (유전자재조합균주를 이용한 생물모니터링에 중금속 오염물이 미치는 영향 평가)

  • Kong, In Chul;Kim, Jin Young;Ko, Kyung-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.4
    • /
    • pp.32-39
    • /
    • 2013
  • This research focused on the effects of heavy metals on the biomonitoring activity of genetically engineered bioluminescent bacteria, Pseudomonas putida mt-2 KG1206. KG1206 was exposed to single or binary mixtures of different heavy metals as well as soils contaminated with heavy metals. In case of single exposure with different inducer pollutant, the toxicity order was as followings : As(III) > Cd, As(V) >> Cu, Cr(VI). The toxic effects of the binary mixtures was compared to the expected effect based on a simple theory of probabilities. The interactive effects were mostly additive, while in few cases antgonistic and synergistic mode of action was observed for some concentration combinations. No considerable correlation was found between the total metal contents in soils and the bioluminescence activity of each sample. However, statistically significant differences (p = 0.0102) were observed between two groups, classified based on arsenite contamination. These results demonstrate the usage of recombinant bioluminescent microorganism in biomonitoring and the complex interactive effects of metals.

2, 4, 5-Trichlorophenoxyacetic Acid 분해균의 유전적 특성에 관한 연구

  • Yoon, So-Yeong;Son, Hong-Joo;Lee, Geon;Lee, Sang-Joon;Lee, Jong-Kun
    • Korean Journal of Microbiology
    • /
    • v.30 no.4
    • /
    • pp.260-264
    • /
    • 1992
  • Pseudotnorju.c sp. EL-071P degrading 2.4.5-trichlorophe~~oxyi~cetaicci d (2.3.5-T) was resistantto antibiotics: rifampicin. ampicillin. kanamycin and metal ions : Zn" and Cu".The plasmitl related to the degradation of 2.4.5-'r and rifa~npicin resistance was isolatecifrom the strain. Its size was about 40 Kb. As result of transforming the plasmid intoEsch~rirhiti coli MClOhl, it was confirmed that the plasmid ura.; related to 2.4.5-T degradation.The strain coulil grow in the various chlorinated aromatic analogs as the solc carbon source.In the case of chlorophcnols. the chlorinated mono-substituteti phenols were easily dcgradetlin the order ol' ortho-. ~ ~ a r um- ,c ~tu-position.T he 2.3.5-T mctaholism was inhibited by 4-chlorophenol of 2.4.5-7' analog. In non-chlorinateci aromatics. ~ C I I L O ~ I ~ Csa.l icylilte i~ndtoluene were uscd ax the carbon source by the strain and typestrain Acudonlotrtr.\ plrtirltrKCTC 1643 having clegrad;~bility of various aromatics. But naphtalene was usecl only bythe A~urlomonri.\ sp. EL-07 1 P.the A~urlomonri.\ sp. EL-07 1 P.

  • PDF