• Title/Summary/Keyword: Toll-like receptors

Search Result 124, Processing Time 0.027 seconds

Immunomodulation of Fungal β-Glucan in Host Defense Signaling by Dectin-1

  • Batbayar, Sainkhuu;Lee, Dong-Hee;Kim, Ha-Won
    • Biomolecules & Therapeutics
    • /
    • v.20 no.5
    • /
    • pp.433-445
    • /
    • 2012
  • During the course of evolution, animals encountered the harmful effects of fungi, which are strong pathogens. Therefore, they have developed powerful mechanisms to protect themselves against these fungal invaders. ${\beta}$-Glucans are glucose polymers of a linear ${\beta}$(1,3)-glucan backbone with ${\beta}$(1,6)-linked side chains. The immunostimulatory and antitumor activities of ${\beta}$-glucans have been reported; however, their mechanisms have only begun to be elucidated. Fungal and particulate ${\beta}$-glucans, despite their large size, can be taken up by the M cells of Peyer's patches, and interact with macrophages or dendritic cells (DCs) and activate systemic immune responses to overcome the fungal infection. The sampled ${\beta}$-glucans function as pathogen-associated molecular patterns (PAMPs) and are recognized by pattern recognition receptors (PRRs) on innate immune cells. Dectin-1 receptor systems have been incorporated as the PRRs of ${\beta}$-glucans in the innate immune cells of higher animal systems, which function on the front line against fungal infection, and have been exploited in cancer treatments to enhance systemic immune function. Dectin-1 on macrophages and DCs performs dual functions: internalization of ${\beta}$-glucan-containing particles and transmittance of its signals into the nucleus. This review will depict in detail how the physicochemical nature of ${\beta}$-glucan contributes to its immunostimulating effect in hosts and the potential uses of ${\beta}$-glucan by elucidating the dectin-1 signal transduction pathway. The elucidation of ${\beta}$-glucan and its signaling pathway will undoubtedly open a new research area on its potential therapeutic applications, including as immunostimulants for antifungal and anti-cancer regimens.

Inhibitory Effect of a Phosphatidyl Ethanolamine Derivative on LPS-Induced Sepsis

  • Lee, Chunghyun;An, Hyun-Jung;Kim, Jung-In;Lee, Hayyoung;Paik, Sang-Gi
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.251-255
    • /
    • 2009
  • Sepsis is the leading cause of death in critically ill patients. Today, around 60% of all cases of sepsis are caused by Gram-negative bacteria. The cell wall component lipopolysaccharide (LPS) is the main initiator of the cascade of cellular reactions in Gram-negative infections. The core receptors for LPS are toll-like receptor 4 (TLR4), MD-2 and CD14. Attempts have been made to antagonize the toxic effect of endotoxin using monoclonal antibodies against CD14 and synthetic lipopolysaccharides but there is as yet no effective treatment for septic syndrome. Here, we describe an inhibitory effect of a phosphatidylethanolamine derivative, PE-DTPA (phosphatidylethanolamine diethylenetriaminepentaacetate) on LPS recognition. PE-DTPA bound strongly to CD14 ($K_d$, $9.52{\times}10^{-8}M$). It dose dependently inhibited LPS-mediated activation of human myeloid cells, mouse macrophage cells and human whole blood as measured by the production of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and nitric oxide, whereas other phospho-lipids including phosphatidylserine and phosphatidylethanolamine had little effect. PE-DTPA also inhibited transcription dependent on $NF-{\kappa}B$ activation when it was added together with LPS, and it rescued LPS-primed mice from septic death. These results suggest that PE-DTPA is a potent antagonist of LPS, and that it acts by competing for binding to CD14.

Nonsaponin fraction of Korean Red Ginseng attenuates cytokine production via inhibition of TLR4 expression

  • Ahn, Huijeong;Han, Byung-Cheol;Kim, Jeongeun;Kang, Seung Goo;Kim, Pyeung-Hyeun;Jang, Kyoung Hwa;So, Seung Ho;Lee, Seung-Ho;Lee, Geun-Shik
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.291-299
    • /
    • 2019
  • Background: Ginsenosides of Korean Red Ginseng extracts (RGE) and its saponin components suppress secretion of inflammasome-mediating cytokines, whereas the nonsaponin fraction (NS) of RGE oppositely stimulates cytokine secretion. Although direct exposure of NS to macrophages in mice induces cytokine production, oral administration of NS has not been studied in inflammasome-related disease in animal models. Methods: Mice were fed RGE or NS for 7 days and then developed peritonitis. Peritoneal cytokines were measured, and peritoneal exudate cells (PECs) were collected to assay expression levels of a set of toll-like receptors (TLRs) and cytokines in response to NS ingestion. In addition, the role of intestinal bacteria in NS-fed mice was assessed. The effect of preexposure to NS in bone marrow-derived macrophages (BMDMs) on cytokine production was further confirmed. Results: NS ingestion attenuated secretion of peritoneal cytokines resulting from peritonitis. In addition, the isolated PECs from NS-fed mice presented lower TLR transcription levels than PECs from control diet-fed mice. BMDMs treated with NS showed downregulation of TLR4 mRNA and protein expression, which was mediated by the $TLR4-MyD88-NF{\kappa}B$ signal pathway. BMDMs pretreated with NS produced less cytokines in response to TLR4 ligands. Conclusion: NS administration directly inhibits TLR4 expression in inflammatory cells such as macrophages, thereby reducing secretion of cytokines during peritonitis.

Evaluation of immune responses in dairy cows immunized with an inactivated vaccine for bovine respiratory disease

  • Aganja, Ram Prasad;Seo, Kangseok;Ha, Seungmin;Yi, Young-Joo;Lee, Sang-Myeong
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.2
    • /
    • pp.251-264
    • /
    • 2021
  • Bovine respiratory syncytial virus (BRSV) and bovine viral diarrhea virus (BVDV) are the main viral contributors to bovine respiratory disease (BRD) with high mortality and morbidity. BRD control measures include vaccination that modulates immunological profiles reflected in blood cells, serum, and body secretions, such as milk. This study evaluated the immune responses to an inactivated BRD vaccine in lactating cows reared in a natural environment on a dairy farm. The cows were intramuscularly inoculated with the vaccine, and serum, blood, and milk were collected pre-and post-vaccination. Our study revealed a prominent increase in BRSV-specific antibodies both in serum and milk, while the change in BVDV-specific antibodies was insignificant. Serum interleukin (IL)-1β and IL-6 levels significantly decreased, but this change was not reflected in milk. Evaluation of pattern recognition receptors (PRRs) via RT-qPCR revealed downregulation of nucleotide-binding oligomerization domain 2 (NOD2). The concentrations of BRSV antibodies, BVDV antibodies, IL-2, and IL-17A in serum and milk were strongly correlated, implying a concurrent influence on both body fluids. Thus, immunological factors modulated as a result of vaccination generally measured in serum were reflected in milk, demonstrating the suitability of milk evaluation as an alternative approach for immunological observations. Furthermore, the correlation between BRSV antibodies and NOD2 and that between BVDV antibodies and toll-like receptor (TLR) 2, TLR3, TLR4, and TLR5 imply the possible role of PRRs for the assessment of the immune response developed in immunized cows reared on the farm.

Two Sjogren syndrome-associated oral bacteria, Prevotella melaninogenica and Rothia mucilaginosa, induce the upregulation of major histocompatibility complex class I and hypoxia-associated cell death, respectively, in human salivary gland cells

  • Lee, Jaewon;Jeon, Sumin;Choi, Youngnim
    • International Journal of Oral Biology
    • /
    • v.46 no.4
    • /
    • pp.190-199
    • /
    • 2021
  • Despite evidence that bacteria-sensing Toll-like receptors (TLRs) are activated in salivary gland tissues of Sjogren syndrome (SS) patients, the role of oral bacteria in SS etiopathogenesis is unclear. We previously reported that two SS-associated oral bacteria, Prevotella melaninogenica (Pm) and Rothia mucilagenosa (Rm), oppositely regulate the expression of major histocompatibility complex class I (MHC I) in human salivary gland (HSG) cells. Here, we elucidated the mechanisms underlying the differential regulation of MHC I expression by these bacteria. The ability of Pm and Rm to activate TLR2, TLR4, and TLR9 was examined using TLR reporter cells. HSG cells were stimulated by the TLR ligands, Pm, and Rm. The levels of MHC I expression, bacterial invasion, and viability of HSG cells were examined by flow cytometry. The hypoxic status of HSG cells was examined using Hypoxia Green. HSG cells upregulated MHC I expression in response to TLR2, TLR4, and TLR9 activation. Both Pm and Rm activated TLR2 and TLR9 but not TLR4. Rm-induced downregulation of MHC I strongly correlated with bacterial invasion and cell death. Rm-induced cell death was not rescued by inhibitors of the diverse cell death pathways but was associated with hypoxia. In conclusion, Pm upregulated MHC I likely through TLR2 and TLR9 activation, while Rm-induced hypoxia-associated cell death and the downregulation of MHC I, despite its ability to activate TLR2 and TLR9. These findings may provide new insight into how oral dysbiosis can contribute to salivary gland tissue damage in SS.

Porcine parvovirus nonstructural protein NS1 activates NF-κB and it involves TLR2 signaling pathway

  • Jin, Xiaohui;Yuan, Yixin;Zhang, Chi;Zhou, Yong;Song, Yue;Wei, Zhanyong;Zhang, Gaiping
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.50.1-50.16
    • /
    • 2020
  • Background: Porcine parvovirus (PPV) is a single-stranded DNA virus that causes porcine reproductive failure. It is of critical importance to study PPV pathogenesis for the prevention and control of the disease. NS1, a PPV non-structural protein, is participated in viral DNA replication, transcriptional regulation, and cytotoxicity. Our previous research showed that PPV can activate nuclear factor kappa B (NF-κB) signaling pathway and then up-regulate the expression of interleukin (IL)-6. Objectives: Herein, the purpose of this study is to determine whether the non-structural protein NS1 of PPV also has the same function. Methods: Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay, western blot, immunofluorescence assay and small interfering RNA (siRNA) were used. Results: Our findings demonstrated that PPV NS1 protein can up-regulate the expression levels of IL-6 and tumor necrosis factor-alpha in a dose-dependent manner. Moreover, PPV NS1 protein was found to induce the phosphorylation of IκBα, then leading to the phosphorylation and nuclear translocation of NF-κB. In addition, the NS1 protein activated the upstream pathways of NF-κB. Meanwhile, TLR2-siRNA assay showed TLR2 plays an important role in the activation of NF-κB signaling pathway induced by PPV-NS1. Conclusions: These findings indicated that PPV NS1 protein induced the up-regulated of IL-6 expression through activating the TLR2 and NF-κB signaling pathways. In conclusion, these findings provide a new avenue to study the innate immune mechanism of PPV infection.

Therapeutic Effects of (+)-Afzelechin on Particulate Matter-Induced Pulmonary Injury

  • Sanghee Cho;Yun Jin Park;Jong-Sup Bae
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.162-169
    • /
    • 2024
  • Particulate matter (PM) constitutes a hazardous blend of organic and inorganic particles that poses health risks. Inhalation of fine airborne PM with a diameter of ≤ 2.5 ㎛ (PM2.5) can lead to significant lung impairments. (+)-afzelechin (AZC), a natural compound sourced from Bergenia ligulata, boasts a range of attributes, including antioxidant, antimicrobial, anticancer, and cardiovascular effects. However, knowledge about the therapeutic potential of AZC for patients with PM2.5-induced lung injuries remains limited. Thus, in this study, we investigated the protective attributes of AZC against lung damage caused by PM2.5 exposure. AZC was administered to the mice 30 min after intratracheal instillation of PM2.5. Various parameters, such as changes in lung tissue wet/dry (W/D) weight ratio, total protein/total cell ratio, lymphocyte counts, levels of inflammatory cytokines in bronchoalveolar lavage fluid (BALF), vascular permeability, and histology, were evaluated in mice exposed to PM2.5. Data demonstrated that AZC mitigated lung damage, reduced W/D weight ratio, and curbed hyperpermeability induced by PM2.5 exposure. Furthermore, AZC effectively lowered plasma levels of inflammatory cytokines produced by PM2.5 exposure. It reduced the total protein concentration in BALF and successfully alleviated PM2.5-induced lymphocytosis. Additionally, AZC substantially diminished the expression levels of Toll-like receptors 4 (TLR4), MyD88, and autophagy-related proteins LC3 II and Beclin 1. In contrast, it elevated the protein phosphorylation of the mammalian target of rapamycin (mTOR). Consequently, the anti-inflammatory attribute of AZC positions it as a promising therapeutic agent for mitigating PM2.5-induced lung injuries by modulating the TLR4-MyD88 and mTOR-autophagy pathways.

Allergy Immunity Regulation and Synergism of Bifidobacteria (Bifidobacteria의 allergy 면역 조절과 synergism)

  • Cho, Kwang Keun;Choi, In Soon
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.482-499
    • /
    • 2017
  • Allergic diseases have increased over the past several decade worldwide including developing countries. Allergic inflammatory responses are caused by Th (T helper)2 immune responses, triggered by allergen ingestion by antigen presenting cells such as dendritic cells (DCs). Intestinal microorganisms control the metabolism and physiological functions of the host, contribute to early immune system maturation during the early life, and homeostasis and epithelial integrity during life. Bifidobacteria have strain-specific immunostimulatory properties in the Th1/Th2 balance, inhibit TSLP (thymic stromal lymphopoietin) and IgE expression, and promote Flg (Filaggrin) and FoxP3 (Treg) expression to alleviate allergies. In addition, unmethylated CpG motif ODN (oligodeoxynucleotides) is recognized by TLR (toll-like receptors)9 of B cells and plasmacytoid dendritic cells (pDCs) to induce innate and adaptive immune responses, while the butyrate produced by Clostridium butyricum activates the GPR (G-protein coupled receptors)109a signaling pathway to induce the expression of anti-inflammatory gene of pDCs, and directly stimulates the proliferation of thymically derived regulatory T (tTreg) cells through the activation of GPR43 or inhibits the activity of HADC (histone deacetylase) to differentiate naive $CD4^+$ T cells into pTreg cells through the histone H3 acetylation of Foxp3 gene intronic enhancer.

Natural and synthetic pathogen associated molecular patterns modulate galectin expression in cow blood

  • Asiamah, Emmanuel Kwaku;Ekwemalor, Kingsley;Adjei-Fremah, Sarah;Osei, Bertha;Newman, Robert;Worku, Mulumebet
    • Journal of Animal Science and Technology
    • /
    • v.61 no.5
    • /
    • pp.245-253
    • /
    • 2019
  • Pathogen-associated Molecular Patterns (PAMPs) are highly conserved structural motifs that are recognized by Pathogen Recognition receptors (PRRs) to initiate immune responses. Infection by these pathogens and the immune response to PAMPS such as lipopolysaccharide (LPS), Peptidoglycan (PGN), bacterial oligodeoxynucleotides [CpG oligodeoxynucleotides 2006 (CpG ODN2006) and CpG oligodeoxynucleotides 2216 (CpG ODN2216)], and viral RNA Polyinosinic-Polycytidylic Acid (Poly I:C), are associated with infectious and metabolic diseases in animals impacting health and production. It is established that PAMPs mediate the production of cytokines by binding to PRRs such as Toll-like receptors (TLR) on immune cells. Galectins (Gal) are carbohydrate-binding proteins that when expressed play essential roles in the resolution of infectious and metabolic diseases. Thus it is important to determine if the expression of galectin gene (LGALS) and Gal secretion in blood are affected by exposure to LPS and PGN, PolyI:C and bacterial CpG ODNs. LPS increased transcription of LGALS4 and 12 (2.5 and 2.02 folds respectively) and decreased secretion of Gal 4 (p < 0.05). PGN increased transcription of LGALS-1, -2, -3, -4, -7, and -12 (3.0, 2.3, 2.0, 4.1, 3.3, and 2.4 folds respectively) and secretion of Gal-8 and Gal-9 (p < 0.05). Poly I:C tended to increase the transcription of LGALS1, LGALS4, and LGALS8 (1.78, 1.88, and 1.73 folds respectively). Secretion of Gal-1, -3, -8 and nine were significantly increased in treated samples compared to control (p < 0.05). CpG ODN2006 did not cause any significant fold changes in LGALS transcription (FC < 2) but increased secretion of Gal-1, and-3 (p < 0.05) in plasma compared to control. Gal-4 was however reduced in plasma (p < 0.05). CpG ODN2216 increased transcription of LGALS1 and LGALS3 (3.8 and 1.6 folds respectively), but reduced LGALS2, LGALS4, LGALS7, and LGALS12 (-1.9, -2.0, -2.0 and; -2.7 folds respectively). Secretion of Gal-2 and -3 in plasma was increased compared to control (p < 0.05). Gal-4 secretion was reduced in plasma (p < 0.05). The results demonstrate that PAMPs differentially modulate galectin transcription and translation of galectins in cow blood.

TIR-catalyzed Small Molecules: Structure and Function in Plant Immunity (TIR 촉매반응에 의해 생성된 소분자들의 식물면역반응에서의 역할)

  • Seong-Hyeon Bae;Sang-Hyun Park;Ye-Rim Cha;Dawon Jeon;Gah-Hyun Lim
    • Journal of Life Science
    • /
    • v.34 no.9
    • /
    • pp.666-672
    • /
    • 2024
  • Plants recognize pathogens through intracellular receptors that trigger defense signaling. Nucleotide-binding leucine-rich repeat (NLR) proteins within a cell specifically recognize pathogenic molecules (effectors), leading to signal transduction that ultimately triggers the cell death pathway, thereby inducing effector-triggered immunity in plants. NLR proteins are broadly categorized into two types based on their N-terminal domains: coiled-coil domain NLRs (CNLs) and toll/interleukin-1 receptor (TIR) domain NLRs (TNLs) are defined by their unique N-terminal domains. The TIR domain, which is responsible for activates nicotinamide adenine dinucleoside hydrolases (NADases), is crucial for the degradation of the NAD+ cofactor. TNL-dependent immune signaling involves lipase-like proteins known as Enhanced Disease Susceptibility 1 (EDS1) and its partners Phytoalexin Deficient 4 (PAD4) and Senescence-Associated Gene 101 (SAG101). This immune system also requires helper NLR subfamilies, such as activated disease resistance 1 (ADR1) and N requirement gene 1 (NRG1). The catalytic activity of TIR domain proteins generates various small molecules reported to activate plant's immune responses. These small molecules bind to specific sites on EDS1-PAD4 and EDS1-SAG101, inducing structural changes in the EP domain, and subsequently enabling interaction with ADR1 or NRG1. Here, we will discuss the characteristics of these small molecules and describe their relationships with protein complexes based on their structural and biochemical characteristics. We will also discuss how these small molecules can activate immune pathways.