• Title/Summary/Keyword: Tolerance-Accumulation

Search Result 226, Processing Time 0.033 seconds

Metabolic engineering of Vit C: Biofortification of potato

  • Upadhyaya, Chandrama P.;Park, Se-Won
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.10a
    • /
    • pp.14-14
    • /
    • 2010
  • Vitamin C (ascorbic acid) is an essential component for collagen biosynthesis and also for the proper functioning of the cardiovascular system in humans. Unlike most of the animals, humans lack the ability to synthesize ascorbic acid on their own due to a mutation in the gene encoding the last enzyme of ascorbate biosynthesis. As a result, vitamin C must be obtained from dietary sources like plants. In this study, we have developed two different kinds of transgenic potato plants (Solanumtuberosum L. cv. Taedong Valley) overexpressing strawberry GalUR and mouse GLoase gene under the control of CaMV 35S promoter with increased ascorbic acid levels. Integration of the these genes in the plant genome was confirmed by PCR and Southern blotting. Ascorbic acid(AsA) levels in transgenic tubers were determined by high-performance liquid chromatography(HPLC). The over-expression of these genes resulted in 2-4 folds increase in AsA intransgenic potato and the levels of AsA were positively correlated with increased geneactivity. The transgenic lines with enhanced vitamin C content showed enhanced tolerance to abiotic stresses induced by methyl viologen(MV), NaCl or mannitol as compared to untransformed control plants. The leaf disc senescence assay showed better tolerance in transgenic lines by retaining higher chlorophyll as compared to the untransformed control plants. Present study demonstrated that the over-expression of these gene enhanced the level of AsA in potato tubers and these transgenics performed better under different abiotic stresses as compared to untransformed control. We have also investigated the mechanism of the abiotic stress tolerance upon enhancing the level of the ascorbate in transgenic potato. The transgenic potato plants overexpressing GalUR gene with enhanced accumulation of ascorbate were investigated to analyze the antioxidants activity of enzymes involved in the ascorbate-glutathione cycle and their tolerance mechanism against different abiotic stresses under invitro conditions. Transformed potato tubers subjected to various abiotic stresses induced by methyl viologen, sodium chloride and zinc chloride showed significant increase in the activities of superoxide dismutase(SOD, EC 1.15.1.1), catalase, enzymes of ascorbate-glutathione cycle enzymes such as ascorbate peroxidase(APX, EC 1.11.1.11), dehydroascorbate reductase(DHAR, EC 1.8.5.1), and glutathione reductase(GR, EC 1.8.1.7) as well as the levels of ascorbate, GSH and proline when compared to the untransformed tubers. The increased enzyme activities correlated with their mRNA transcript accumulation in the stressed transgenic tubers. Pronounced differences in redox status were also observed in stressed transgenic potato tubers that showed more tolerance to abiotic stresses when compared to untransformed tubers. From the present study, it is evident that improved to lerance against abiotic stresses in transgenic tubers is due to the increased activity of enzymes involved in the antioxidant system together with enhanced ascorbate accumulated in transformed tubers when compared to untransformed tubers. At moment we also investigating the role of enhanced reduced glutathione level for the maintenance of the methylglyoxal level as it is evident that methylglyoxal is a potent cytotoxic compound produced under the abiotic stress and the maintenance of the methylglyoxal level is important to survive the plant under stress conditions.

  • PDF

Anti-oxidative Effect of Piperine from Piper nigrum L. in Caenorhabditis elegans

  • Park, Hyun Mee;Kim, Jun Hyeong;Kim, Dae Keun
    • Natural Product Sciences
    • /
    • v.25 no.3
    • /
    • pp.255-260
    • /
    • 2019
  • Piper nigrum L. (Piperaceae), which is a well-known food seasoning, has been used as a traditional medicine for the treatment of vomiting, abdominal pain, diarrhea and anorexia in Korea, China and Japan. Methanol extract from the fruit of P. nigrum was successively partitioned as n-hexane, methylene chloride, ethyl acetate, n-butanol and $H_2O$ soluble fractions. Among those fractions the ethyl acetate soluble fraction showed the most potent DPPH radical scavenging activity, and piperine was isolated from the ethyl acetate fraction. To know the antioxidant activity of piperine, we tested the activities of superoxide dismutase (SOD) and catalase together with oxidative stress tolerance and intracellular ROS level in Caenorhabditis elegans. To investigate whether piperine-mediated increased stress tolerance was due to regulation of stress-response gene, we quantified SOD-3 expression using transgenic strain including CF1553. Consequently, piperine enhanced SOD and catalase activities of C. elegans, and reduced intracellular ROS accumulation in a dose-dependent manner. Moreover, piperine-treated CF1553 worms exhibited significantly higher SOD-3::GFP intensity.

Antioxidant Activity of Ethyl acetate Fraction of Berberis koreana Palibin in Caenorhabditis elegans (매자나무 Ethyl acetate 분획물의 예쁜 꼬마선충 내의 항산화 효과)

  • Ji Woo Choi;Jun Hyeong Kim;Jae Hyeok Lee;Dae Keun Kim
    • Korean Journal of Pharmacognosy
    • /
    • v.54 no.2
    • /
    • pp.66-71
    • /
    • 2023
  • Ethyl acetate (EA) soluble fraction of the Berberis amurensis (Berberidaceae) methanol extract showed the potent DPPH radical scavenging activity through Caenorhabditis elegans model system. The EA fraction was measured for the activity of superoxide dismutase (SOD), catalase, and oxidative stress tolerance by using C. elegans along with reactive oxygen species (ROS) level. In addition, SOD-3 expression was conducted using a transgenic strain (CF1553) to confirm that the regulation of the stress response gene is responsible for the increased stress tolerance of C. elegans treated by the EA fraction. As a result, the EA soluble fraction of B. amurensis increased SOD and catalase activity, and decreased ROS accumulation in a dose-dependent manner. Furthermore, the EA fraction-treated CF1553 worm showed higher SOD-3::GFP intensity than the control worm.

Influence of Competing Ions and Metabolic Inhibitors on Heavy Metal Accumulation in the Cell of Heavy Metal-Tolerant Microorganisms (중금속내성균의 중금속 축적에 미치는 경쟁이온 및 대사저해제의 영향)

  • Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.142-148
    • /
    • 1997
  • This study was performed to develop the biological treatment technology of wastewater polluted with heavy metals. Heavy metal-tolerant microorganisms, such as Pseudomonas putida, P. aeruginosa, P. chlororaphis and P. stutzeri possessing the ability to accumulate cadmium, lead, zinc and copper, respectively, were isolated from industrial wastewaters and mine wastewaters polluted with various heavy metals. The effect of competing ions and metabolic inhibitors on heavy metal accumulation in the cells was investigated. Heavy metal accumulation into cells was drastically decreased in the presence of competing cation, $Al^{3+}$, and also decreased, at a lesser extent, in the presence of competing anions, $CO_3\;^{2-}$ and $PO_4\;^{2-}$. But heavy metal accumulation was not influenced generally in the presence of the other rations and anions. The accumulation of Cd, Zn or Cu by Cd-, Zn- or Cu-tolerant microorganism was remarkably decreased in the presence of metabolic inhibitors, but the accumulation of Pb by Pb-tolerant microorganism was little affected in the presence of metabolic inhibitors. These results suggested that the accumulation of Cd, Zn or Cu by Cd-, Zn- or Cu-tolerant microorganism was concerned with the biological activity depending on energy, and the accumulation of Pb by Pb-tolerant microorganism depended on not the biological activity but the physical adsorption on the cell surface. Each heavy metal-tolerant microorganism also exhibited some ability to accumulate the other heavy metals in solution containing equal concentrations of cadmium, lead, zinc and copper, when measured at 48 hours after inoculation of the microorganisms, but the accumulation rates were somewhat low as compared to the accumulation rates of heavy metal fitting to each tolerance. These results suggested that the accumulation of each heavy metal by each heavy metal-tolerant microorganism was a selective accumulation process.

  • PDF

Sodium nitroprusside mediates seedling development and attenuation of oxidative stresses in Chinese cabbage

  • Sung, Chang-Hyun;Hong, Jeum-Kyu
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.243-251
    • /
    • 2010
  • Nitric oxide (NO) has been shown to be involved in diverse physiological processes in microbes, animals and plants. In this study, the involvement of NO in the development and possible roles in oxidative stress protection of Chinese cabbage (Brassica rapa subsp. pekinensis cv. Samrack-ulgari) seedlings were investigated. Exogenous application of sodium nitroprusside (SNP) retarded root elongation, while increasing lateral root formation of Chinese cabbage. Plants showed no signs of external stress due to SNP application in true leaves. Cotyledons of 3-week-old Chinese cabbage plants were found to be highly sensitive to SNP application. Treated cotyledons displayed rapid tissue collapse and associated cell death. Although SNP application reduced root growth under normal growth conditions, it also enhanced methyl viologen (MV)-mediated oxidative stress tolerance. Analysis of SNP application to Chinese cabbage leaf disks, revealed SNP-induced tolerance against oxidative stresses by MV and $H_2O_2$, and evidence includes prevention of chlorophyll loss, superoxide anion (${O_2}^-$) accumulation and lipid peroxidation. This report supports a role for nitric oxide in modulating early seedling development, programmed cell death and stress tolerance in Chinese cabbage.

Expression of Indica rice OsBADH1 gene under salinity stress in transgenic tobacco

  • Hasthanasombut, Supaporn;Ntui, Valentine;Supaibulwatana, Kanyaratt;Mii, Masahiro;Nakamura, Ikuo
    • Plant Biotechnology Reports
    • /
    • v.4 no.1
    • /
    • pp.75-83
    • /
    • 2010
  • Glycine betaine has been reported as an osmoprotectant compound conferring tolerance to salinity and osmotic stresses in plants. We previously found that the expression of betaine aldehyde dehydrogenase 1 gene (OsBADH1), encoding a key enzyme for glycine betaine biosynthesis pathway, showed close correlation with salt tolerance of rice. In this study, the expression of the OsBADH1 gene in transgenic tobacco was investigated in response to salt stress using a transgenic approach. Transgenic tobacco plants expressing the OsBADH1 gene were generated under the control of a promoter from the maize ubiquitin gene. Three homozygous lines of $T_2$ progenies with single transgene insert were chosen for gene expression analysis. RT-PCR and western blot analysis results indicated that the OsBADH1 gene was effectively expressed in transgenic tobacco leading to the accumulation of glycine betaine. Transgenic lines demonstrated normal seed germination and morphology, and normal growth rates of seedlings under salt stress conditions. These results suggest that the OsBADH1 gene could be an excellent candidate for producing plants with osmotic stress tolerance.

Induction of Methanol Tolerance in Rhizopus nigricans Ehrenberg (Rhizopus nigricans Ehrenberg의 Methanol 내성 유도)

  • 김명희;성혜윤;김말남
    • Korean Journal of Microbiology
    • /
    • v.31 no.4
    • /
    • pp.306-311
    • /
    • 1993
  • The effects of methanol. used as a solvent for the hydrophobic substrate progesterone. on the morphology of Rhizopus nigricans and 11$\alpha$-hydroxylation of progesterone was investigated. The methanol tolerance of the 11$\alpha$-hydroxylase system in polyacrylamide immobilized R. nigricans mycelia as well as in free mycelia has been induced by adding various unsaturated fatty acids. biotin and ions into the cultivation medium. Immobilization of the cell seemed to protect the cells from denaturation by methanol. It gave higher reaction rate of progesterone than the free mycelia in the presence of methanol.500 $\mu$g/l of biotin was found to be the most effective induction agent for the methanol tolerance among tested chemicals. R. nixricans cells sustained its enzymatic activity at higher methanol concentrations as a result of accumulation of unsaturated fatty acids. especially oleic acid. in the membrane phospholipid.

  • PDF

Overexpression of the Metal Transport Protein1 gene (MTP1) in Arabidopsis Increased tolerance by expression site (금속전달 유전자(MTP1)의 과발현 애기장대에서 발현 위치에 따른 내성 증가 연구)

  • Kim, Donggiun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.327-332
    • /
    • 2019
  • Today's scientists try to remove heavy metals with many new technologies such as phytoremediation. One of the best cutting edge technologies is developing transgenic plants to remove certain heavy metal in soil. I constructed the transformation vector expressing T. goesingense Metal Transport Protein1 gene and TgMTP1: GFP genes. The transgenic plants were selected and confirmed the transformed genes into Arabidopsis thaliana genome. Expression was confirmed in several parts in Arabidopsis cells, tissues and organs. When TgMTP1 overexpressing Arabidopsis thaliana were subjected, transgenic plants showed higher heavy metal tolerance than non-transgenic. For further study I selected the transgenic plant lines with enhanced tolerance against four different heavy metals; Zn, Ni, Co, Cd. The accumulation of these metals in these plants was further analyzed. The TgMTP1 overexpressing Arabidopsis thaliana plant of selected lines are resistant against heavy metals. This plant is characterized by the expression of the MTP1 gene accumulating heavy metal in the vacuole and being simultaneously expressed on the plasma membrane. In conclusion, these plants may be used in plant purification applications, and as a plant with increased tolerance.

Amelioration of $Cd^{++}$ Toxicity by $Ca^{++}$ on Germination, Growth and Changes in Anti-Oxidant and Nitrogen Assimilation Enzymes in Mungbean(Vigna mungo) Seedlings

  • Kochhar Sunita;Ahmad Gayas;Kochhar Vinod Kumar
    • Journal of Plant Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.259-264
    • /
    • 2004
  • The present study describes the ameliorating effect of $Ca^{++}\;on\;Cd^{++}$ toxicity on the germination, early growth of mungbean seedlings, nitrogen assimilation enzyme. s-nitrate reductase (NR), nitrite reductase (NIR), anti-oxidant enzymes (POD, CAT and SOD) and on the accumulation of hydrogen peroxide and sulphydryls. $Cd^{++}$ inhibited seed germination and root and shoot length of seedlings. While NR activity was down- regulated, the activities of NIR, POD and SOD were up- regulated with $Cd^{++}$ treatment. $Cd^{++}$ treatment also increased the accumulation of sulphydryls and peroxides, which is reflective of increased thiol rich proteins and oxidative stress. $Ca^{++}$ reversed the toxic effects of $Cd^{++}$ on germination and on early growth of seedlings as well as on the enzyme activities, which were in turn differentially inhibited with a combined treatment with calcium specific chelator EGTA. The results indicate that the external application of $Ca^{++}$ may increase the tolerance capacity of plants to environmental pollutants by both up and down regulating metabolic activities. Abbreviations: $Cd^{++}= cadmium,\;Ca^{++} = calcium$, NR= nitrate reductase, NIR=nitrite reductase, POD = peroxidse, SOD= superoxide dismutase, CAT= catalase, EGTA= ethylene glycol-bis( $\beta-aminoethyl ether$)-N,N,N,N-tetraacetic acid.

형질전환 식물을 이용한 phytoremediation

  • Kim, Hyang-Mi;Gwon, Tae-Ho;Yang, Mun-Sik
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.177-180
    • /
    • 2001
  • Tobacco plants were transformed by A. tumefaciens harboring human ferritin gene and they were subjected to investigate for the expression of transformed gene as well as heavy metal accumulation. Seed from self-fertilized transgenic plants was germinated on media containing toxic level of Cd, Cu, Zn, Fe, Mn and scored for tolerance to this heavy metals. There is difference in growth rate between transgenic and control plants, especially Cd, Cu. And transgenic plants accumulated more heavy metals than control plants.

  • PDF