• Title/Summary/Keyword: Titanium plates

Search Result 104, Processing Time 0.026 seconds

Characterization of Surface at Ti Oxide Films Converted by Anodic Spark Discharge (양극산화 불꽃 방전에 의한 Ti 산화피막의 표면특성)

  • Song, Jae-Joo;Han, Byung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.545-546
    • /
    • 2006
  • This study was performed to investigate the surface properties of electrochemically oxidized pure titanium by anodic spark discharging method. Commercially pure titanium plates of $10{\times}20{\times}1[mm]$ in dimensions were polished sequentially emery paper. Anodizing was performed at current density of $76.2\;[mA/cm^2]$, application voltage of 290, 350, 400 [V] using a regulated DC power supply, which allowed automatic transition constant current when a preset maximum voltage has been reached. The Ti surface oxided films was characterized by scanning electron microscope(SEM). The precipitation of HA(Hydroxyapatite) crystals on anodized surface was greatly accelerated by hydrothermal treatment. The concentrations of DL-$\alpha$-Glycerolphosphate Magnesiurn(DL-$\alpha$-GP-Mg) salt and Ca acetate in an electrolyte was highly affected the precipitation of HA crystals converted by Ti Anodized oxide films by Shape of Impulse Voltage.

  • PDF

Fuel Cell End Plates: A review

  • Kim, Ji-Seok;Park, Jeong-Bin;Kim, Yun-Mi;Ahn, Sung-Hoon;Sun, Hee-Young;Kim, Kyung-Hoon;Song, Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.39-46
    • /
    • 2008
  • The end plates of fuel cell assemblies are used to fasten the inner stacks, reduce the contact pressure, and provide a seal between Membrane-Electrode Assemblies (MEAs). They therefore require sufficient mechanical strength to withstand the tightening pressure, light weight to obtain high energy densities, and stable chemical/electrochemical properties, as well as provide electrical insulation. The design criteria for end plates can be divided into three parts: the material, connecting method, and shape. In the past, end plates were made from metals such as aluminum, titanium, and stainless steel alloys, but due to corrosion problems, thermal losses, and their excessive weight, alternative materials such as plastics have been considered. Composite materials consisting of combinations of two or more materials have also been proposed for end plates to enhance their mechanical strength. Tie-rods have been traditionally used to connect end plates, but since the number of connecting parts has increased, resulting in assembly difficulties, new types of connectors have been contemplated. Ideas such as adding reinforcement or flat plates, or using bands or boxes to replace tie-rods have been proposed. Typical end plates are rectangular or cylindrical solid plates. To minimize the weight and provide a uniform pressure distribution, new concepts such as ribbed-, bomb-, or bow-shaped plates have been considered. Even though end plates were not an issue in fuel cell system designs in the past, they now provide a great challenge for designers. Changes in the materials, connecting methods, and shapes of an end plate allow us to achieve lighter, stronger end plates, resulting in more efficient fuel cell systems.

Attachment of Human Gingival Fibroblasts to Commercially Pure Titanium Surfaces with Different Instruments;A comparative Study in Vitro (기구조작에 따른 순수 타이타늄 표면 변화와 치은 섬유아 세포 부착에 관한 연구)

  • Seo, Sung-Chan;Song, In-Taeck;Lim, Jeong-Su;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.607-621
    • /
    • 1999
  • This study examined the human fibroblasts cell attachment to commercially pure titanium surface which had been instrumented by 3 types of periodontal instruments. Commercially pure titanium plates were uniformly scaled using plastic, stainless steel, titanium curette. these all experimental groups 65 undirectional strokes with the designated curettes. Alteration of the surfaces due to instrumentation was evaluated by Form Talysurf(R) and reported as Ra value(mean surface roughness). Then other experimental groups were immersed in a cell suspension of human gingival fibroblasts($1{\times}10^5$ cell/ml). After 3 days of culture, cell attachment and morphology was observed by SEM, and attached cell were counted by Hemocytometer. A significant difference in mean Ra value was observed for surface instrumented by metal curette compared to either control surface or surface instrumented by the plastic curette(P<0.01). No stastically significant difference was noted between control surface and those instrumented by the plastic curette. SEM observation showed that cell morphology and attachment to the commercially pure titanium plate was similar appearance on the all experimental groups. Experimental groups instrumented by titanium curette and stainless steel curette were more attached cell number than control group, but experimental group instrumented by plastic curette were similar with control groups(P<0.01). In summary, metal curette produced an significant alteration of the commercially pure titanium surface and more favorable surface topography for cell attachment. Otherwise plastic curette was insignificantly altered the commercially pure titanium surface(P<0.01).

  • PDF

The effect of fluoride-containing oral rinses on the corrosion resistance of titanium alloy (Ti-6Al-4V)

  • Huang, Gui-Yue;Jiang, Heng Bo;Cha, Jung-Yul;Kim, Kwang-Mahn;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.47 no.5
    • /
    • pp.306-312
    • /
    • 2017
  • Objective: The purpose of this study was to examine the effect of commercially available fluoride-containing oral rinses on the corrosion behavior of titanium alloys, which are the main components of orthodontic miniscrews. Methods: Four commercially available oral rinses (solution A, pH 4.46/260 ppm fluoride; solution B, pH 4.41/178 ppm fluoride; solution C, pH 6.30/117 ppm fluoride; and solution D, pH 4.17/3.92 ppm fluoride) were tested on titanium alloy (Ti-6Al-4V) circular plates, and saline was used as the control. The open-circuit potential and potentiodynamic polarization of these materials were measured. Thereafter, all samples were evaluated under a field-emission scanning electron microscope. Results: Among the tested oral rinses, except solution D, the more the fluoride content was, the greater was the corrosion potential downtrend; the corrosion resistance of the titanium alloy sample was also lowered significantly (p < 0.05). Field-emission scanning electron microscopic analysis of the surface morphology of the titanium alloy samples revealed that all samples had some defects, crevices, or pitting after exposure to the oral rinses than before treatment. In particular, the samples in solution A showed the most changes. Conclusions: Commercially available oral rinses having a high fluoride concentration and a low pH may reduce the corrosion resistance of titanium alloys used in dental appliances such as orthodontic titanium miniscrews and brackets.

Analyzing corrosion rates of TiO2 nanotubes/titanium separation passive layer under surface and crystallization changes

  • Torres, I. Zamudio;Dominguez, A. Sosa;Bueno, J.J. Perez;Meas, Y.;Lopez, M.L. Mendoza;Dector, A.
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.211-219
    • /
    • 2021
  • The evaluation of the corrosion resistance of titanium with a TiO2 nanotubes top layer was carried out (TiO2 NT). These nanostructures were evolved into anatase nanoparticles without heat treatment in an aqueous medium, which is a novel phenomenon. This work analyzes the layer between the nanotube bottom and the substrate, which is thin and still susceptible to corrosion. The bottom of TiO2 nanotubes having Fluor resulting from the synthesis process changed between amorphous to crystalline anatase with a crystallite size of about 4 nm, which influenced the corrosion rates. Four kinds of samples were evaluated. A) NT by Ti anodizing; B) NTSB for Ti plates, either modifying its surface or anodizing the modified surface; C) NT-480 for anodized Ti and heat-treated (480℃) for reaching the anatase phase; D) NTSB-480 for Ti plates, first, modifying its surface using sandblast, after that, anodizing the modified surface, and finally, heat-treated to 480℃ to compare with samples having induced crystallization and passivation. Four electrochemical techniques were used to evaluate the corrosion rates. The surfaces having TiO2 nanotubes with a sandblast pre-treatment had the highest resistance to corrosion.

Absorbable Plate-Related Infection after Facial Bone Fracture Reduction

  • Choi, Seung Hyup;Lee, Jang Hyun
    • Archives of Craniofacial Surgery
    • /
    • v.17 no.1
    • /
    • pp.1-4
    • /
    • 2016
  • Absorbable plates are used widely for fixation of facial bone fractures. Compared to conventional titanium plating systems, absorbable plates have many favorable traits. They are not palpable after plate absorption, which obviates the need for plate removal. Absorbable plate-related infections are relatively uncommon at less than 5% of patients undergoing fixation of facial bone fractures. The plates are made from a mixture of poly-L-lactic acid and poly-DL-lactic acid or poly-DL-lactic acid and polyglycolic acid, and the ratio of these biodegradable polymers is used to control the longevity of the plates. Degradation rate of absorbable plate is closely related to the chance of infection. Low degradation is associated with increased accumulation of plate debris, which in turn can increase the chance of infection. Predisposing factors for absorbable plate-related infection include the presence of maxillary sinusitis, plate proximity to incision site, and use of tobacco and significant amount of alcohol. Using short screws in fixating maxillary fracture accompanied maxillary sinusitis will increase the rate of infection. Avoiding fixating plates near the incision site will also minimize infection. Close observation until complete absorption of the plate is crucial, especially those who are smokers or heavy alcoholics. The management of plate infection is varied depending on the clinical situation. Severe infections require plate removal. Wound culture and radiologic exam are essential in treatment planning.

Mini-plate removal in maxillofacial trauma patients during a five-year retrospective study

  • Park, Hyun-Chun;Kim, Su-Gwan;Oh, Ji-Su;You, Jae-Seek;Kim, Won-Gi
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.42 no.4
    • /
    • pp.182-186
    • /
    • 2016
  • Objectives: The purpose of this study was to analyze the incidence of indications for the removal of mini-plates over a five-year period in maxillofacial trauma patients. Materials and Methods: The medical records of 530 patients who underwent treatment with mini-plate fixation after maxillofacial trauma were reviewed for a five-year period (May 2007 to May 2012). Patients were evaluated concerning the number of mini-plates removed, age and gender distributions, time between insertion and removal, indication for removal, and site of removal. Results: The plates of 120 patients were removed (26 females and 94 males). The removal rate was 22.6%. The most frequent indication for removal was patient demand (81.7%), followed by tooth extraction (7.5%), and pain (3.3%). The most frequent removal site was the mandible (95.0%). Conclusion: The number of mini-plates removed was small, and the most common indication for removal was patient demand. There is no evidence to support a recommendation for the routine removal of titanium mini-plates.

THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION AND DISPLACEMENT IN MANDIBLE ACCORDING TO TREATMENT MODALITIES OF MANDIBULAR ANGLE FRACTURES (하악각 골절의 치료 방법에 따른 하악골의 응력 분포 및 변위에 관한 삼차원 유한요소법적 연구)

  • Ku, Je-Hoon;Kim, Il-Kyu;Chang, Jae-Won;Yang, Jung-Eun;Sasikala, Balaraman;Wang, Boon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.3
    • /
    • pp.207-217
    • /
    • 2010
  • The purpose of this study was to evaluate the effects of the stress distribution and displacement in mandible according to treatment modalities of mandibular angle fractures, using a three dimensional finite element analysis. A mechanical model of an edentulous mandible was generated from 3D scan. A 100-N axial load and four masticatory muscular supporting system were applied to this model. According to the number, location and materials of titanium and biodegradable polymer plates, the experimental groups were divided into five types. Type I had a single titanium plate in the superior border of mandibular angle, type II had two titanium plates in the superior tension border and in the inferior compression border of mandibular angle, type III had a single titanium plate in the ventral area of mandibular angle, type IV had a single biodegradable polymer plate in the superior border of mandibular angle, type V had a single biodegradable polymer plate in the ventral area of mandibular angle. The results obtained from this study were follows: 1. Stress was concentrated on the condylar neck of the fractured side except Type III. 2. The values of von-Mises stress of the screws were the highest in the just-posterior screw of the fracture line, and in the just-anterior screw of Type III. 3. The displacement of mandible in Type III was 0.04 mm, and in Type I, II, IV, and V were 0.10 mm. 4. The plates were the most stable in the ventral area of mandibular angle (Type III, V). In conclusion, the ventral area of mandibular angle is the most stable location in the fixation of mandibular angle fractures, and the just- posterior and/or the just-anterior screws of the fracture line must be longer than the other, and surgeons have to fix accurately these screws, and the biodegradable polymer plate also was suitable for the treatment of mandible angle fracture.

A study on the weldability of TMCP steel plates in underwater wet arc welding (TMCP강의 습식수중 아크 용접성에 관한 고찰)

  • 오세규;김민남
    • Journal of Welding and Joining
    • /
    • v.5 no.4
    • /
    • pp.28-35
    • /
    • 1987
  • The feasibility of underwater wet arc welding process is experimentally investigated by using high titanium oxide type electrodes and TMCP steel plates as base metal. It is assertained the tis process may be put to practical use. Main results are summarized as follows; (1) Sound underwater weld can be obtained by skilled welding operator, if proper welding conditions are selected. (2) In underwater wet arc welding process, the mechanical properties of HAZ are depend upon welding condition and the optimum welding condition can obtained. (3) The maximum hardness in the HAZ of TMCP steel plates is increased significantly in this welding process.

  • PDF

A Study of Weldability for Pure Titanium by Nd:YAG Laser(III) - Weld Properties of Edge Welding - (순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(III) - 에지 용접 특성 -)

  • Kim, Jong-Do;Kil, Byung-Lea;Kwak, Myung-Sub;Song, Moo-Keun
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.74-79
    • /
    • 2009
  • Titanium and titanium alloy can be reproduced immediately even if oxide films($TiO_2$) break apart in sea water. Therefore, since titanium demonstrates large specific strength and outstanding resistance to stress corrosion cracking, crevice corrosion, pitting and microbiologically influenced corrosion in sea water environment, it has been widely applied to heat exchanger for ships. In particular, with excellent elongation, pure titanium may be deemed as optimal material for production of heat exchanger plate which is used with wrinkles formed for efficient heat exchange. Conventional plate type heat exchanger prevented leakage of liquid through insertion of gasket between plates and mechanical tightening by bolts and nuts, but in high temperature and high pressure environment, gasket deterioration and leakage occur, so heat exchanger for LPG re-liquefaction device etc do not use gasket but weld heat exchanger plate for use. On the other hand, since welded plate cannot be separated, it is important to obtain high quality reliable welds. In addition, for better workability and production performance, lasers that can obtain weldment with large aspect ratio and demonstrate fast welding speed even in atmospheric condition not in vacuum condition are used in producing products. So far, 1st report and 2nd report compared and analyzed embrittlement degrees by bead colors of weldment through quantitative analysis of oxygen and nitrogen and measurement of hardness as fundamental experiment for the evaluation of titanium laser welding, and evaluated the welding performance and mechanical properties of butt welding. This study welded specimens in various conditions by using laser and GTA welding machine to apply edge welding to heat exchanger, and evaluated the mechanical strength through tensile stress test. As a result of tensile test, laser weldment demonstrated tensile strength 4 times higher than GTA welds, and porosity could be controlled by increasing and decreasing slope of laser power at overlap area.