• Title/Summary/Keyword: Titanium oxide films

Search Result 95, Processing Time 0.029 seconds

Chemical Binding States of Ti and O Elements in Anodic Ti Oxide Films (Ti 양극산화 피막에서 Ti 및 O원소의 화학결합 상태)

  • 유창우;오한준;이종호;장재명;지충수
    • Journal of Surface Science and Engineering
    • /
    • v.35 no.6
    • /
    • pp.383-390
    • /
    • 2002
  • To investigate behaviors of Ti and O elements and microstructures of anodic titanium oxide films, the films were prepared by anodizing pure titanium in $H_2$S $O_4$, $H_3$P $O_4$, and $H_2O$$_2$ mixed solution at 180V. The microstructures and chemical states of the elements were analyzed using SEM, X-ray mapping, AFM, XRD, XPS (depth profile). The films formed on a titanium substrate showed porous layers which were composed of pore and wall, And with increasing anodizing time a hexagonal shape of cell structures were dominant and solace roughness increased. From the XRD result the structure of the Ti $O_2$ layer was anatase type of crystal on the whole. In the XPS spectra it was found that Ti and O were chemically binded in forms of Ti $O_2$, TiOH, $Ti_2$ $O_3$ at Ti 2p, and Ti $O_2$, $Ti_2$ $O_3$, $P_2$ $O_{5}$, S $O_4^{2-}$ at O ls respectively. Concentration of Ti $O_2$ decreased as the depth increased from the surface of the oxide film towards the substrate, but to the contrary concentrations of TiOH and $Ti_2$ $O_3$ increased.d.

Surface and Optical Characteristics of Cobalt Dopped-titanium Oxide Film Fabricated by Water Spray Pyrolysis Technique (습식 분무 열분해 방법으로 제조한 코발트 도핑된 티타늄 산화막의 표면 및 광학적 특성)

  • Song Ho-Jun;Park Yeong-Joon
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.209-215
    • /
    • 2005
  • Titanium dioxide films $(TiO_2)$ doped cobalt transition metal were prepared on titanium metal by water spray pyrolysis technique. Micro-morphology, crystalline structure, chemical composition and binding state of sample groups were evaluated using field emission scanning microscope(FE-SEM), X-ray diffractometer(XRD), Raman spectrometer, X-ray photoelectron spectrometer(XPS). $TiO_2$ films of rutile structure were predominately formed on all sample groups and $Ti_2O_3$ oxide was coexisted on the surface of cobalt doped-sample groups. The optical absorption peaks measured by using UV-VIS-NIR spectrophotometer were observed at specific wavelength region in sample groups doped cobalt ion. This result could be analyzed by introducing crystal field theory.

Microstructure and Morphology of Titanium Thin Films Deposited by Using Shadow Effect (그림자효과를 이용하여 증착한 타이타늄 박막의 미세구조 및 형상)

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.709-714
    • /
    • 2019
  • In order to observe the microstructure and morphology of porous titanium -oxide thin film, deposition is performed under a higher Ar gas pressure than is used in the general titanium thin film production method. Black titanium thin film is deposited on stainless steel wire and Cu thin plate at a pressure of about 12 Pa, but lustrous thin film is deposited at lower pressure. The black titanium thin film has a larger apparent thickness than that of the glossy thin film. As a result of scanning electron microscope observation, it is seen that the black thin film has an extremely porous structure and consists of a separated column with periodic step differences on the sides. In this configuration, due to the shadowing effect, the nuclei formed on the substrate periodically grow to form a step. The surface area of the black thin film on the Cu thin plate changes with the bias potential. It has been found that the bias of the small negative is effective in increasing the surface area of the black titanium thin film. These results suggest that porous titanium-oxide thin film can be fabricated by applying the appropriate oxidation process to black titanium thin film composed of separated columns.

Fabrication of Hybrid Films Using Titanium Chloride and 2,4-hexadiyne-1,6-diol by Molecular Layer Deposition

  • Yun, Gwan-Hyeok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.418-418
    • /
    • 2012
  • We fabricated a new type of hybrid film using molecular layer deposition (MLD). The MLD is a gas phase process analogous to atomic layer deposition (ALD) and also relies on a saturated surface reaction sequentially which results in the formation of a monolayer in each sequence. In the MLD process, polydiacetylene (PDA) layers were grown by repeated sequential surface reactions of titanium tetrachloride and 2,4-hexadiyne-1,6-diol with ultraviolet (UV) polymerization under a substrate temperature of $100^{\circ}C$. Ellipsometry analysis showed a self-limiting surface reaction process and linear growth of the hybrid films. Polymerization of the hybrid films was confirmed by infrared (IR) spectroscopy and UV-Vis spectroscopy. Composition of the films was confirmed by IR spectroscopy and X-ray photoelectron (XP) spectroscopy. The titanium oxide cross-linked polydiacetylene (TiOPDA) hybrid films exhibited good thermal and mechanical stabilities.

  • PDF

Formation of Ti-0 Biomedical Film on Ti6A14V Alloy by DC Glow Plasma Oxidizing

  • Zheng, C.L.;Cui, F.Z.;Xu, Z.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.1
    • /
    • pp.16-21
    • /
    • 2002
  • Ti-0 film is a kind of biocompatible surface materials. In this paper, a new method, glow discharge plasma oxidizing, has been used in synthesizing Ti-O gradient films on Ti6A14V substrates. The effects of ion bombardment and process parameters on the structures of titanium oxide layers have been investigated. The results demonstrate that DC glow plasma oxidizing is more efficient in preparation of dense, hard, and high adhesive Ti-O biomedical films on titanium and its alloys. Samples treated by this method show higher hardness values than by others. Especially, in the condition of hollow cathode discharge, the ion bombardment enhances ionization of oxygen, promotes the oxygen permeation and facilitates the formation of the oxide of low valence states of titanium.

  • PDF

Anodic Dissolution Property and Structure of Passive Films on Equiatomic TiNi Intermetallic Compound

  • Lee, Jeong-Ja;Yang, Won-Seog;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.311-315
    • /
    • 2007
  • The anodic polarization behavior of equiatomic TiNi shape memory alloy with pure titanium as a reference material was investigated by means of open circuit potential measurement and potentiodynamic polarization technique. And the structure of passive films on TiNi intermetallic compounds was also conducted using AES and ESCA. While the dissolved Ni(II) ion did not affect the dissolution rate and passivation of TiNi alloy, the dissolved Ti(III) ion was oxidated to Ti(IV) ion on passivated TiNi surface at passivation potential. It has also been found that the Ti(IV) ion increases the steady state potential, and passivates TiNi alloy at a limited concentration of Ti(IV) ion. The analysis by AES showed that passive film of TiNi alloy was composed of titanium oxide and nickel oxide, and the content of titanium was three times higher than that of nickel in outer side of passive film. According to the ESCA analysis, the passive film was composed of $TiO_2$ and NiO. It seems reasonable to suppose that NiO could act as unstabilizer to the oxide film and could be dissolved preferentially. Therefore, nickel oxide contained in the passive film may promote the dissolution of the film, and it could be explained the reason of higher pitting susceptibility of TiNi alloy than pure Ti.

Specific Binding of Streptavidin onto the Nonbiofouling Titanium/Titanium Oxide Surface through Surface-Initiated, Atom Transfer Radical Polymerization and Bioconjugation of Biotin

  • Kang, Sung-Min;Lee, Bong-Soo;Kim, Wan-Joong;Choi, In-Sung S.;Kil, Mun-Jae;Jung, Hyuk-Jun;Oh, Eu-Gene
    • Macromolecular Research
    • /
    • v.17 no.3
    • /
    • pp.174-180
    • /
    • 2009
  • Chemical modification of titanium/titanium oxide (Ti/$TiO_2$) substrates has recently gained a great deal of attention because of the applications of Ti/$TiO_2$-based materials to biomedical areas. The reported modification methods generally involve passive coating of Ti/$TiO_2$ substrates with protein-resistant materials, and poly(ethylene glycol) (PEG) has proven advantageous for bestowing a nonbiofouling property on the surface of Ti/$TiO_2$. However, the wider applications of Ti/$TiO_2$ based materials to biomedical areas will require the introduction of biologically active moieties onto Ti/$TiO_2$, in addition to nonbiofouling property. In this work, we therefore utilized surface-initiated polymerization to coat the Ti/$TiO_2$ substrates with polymers presenting the nonbiofouling PEG moiety and subsequently conjugated biologically active compounds to the PEG-presenting, polymeric films. Specifically, a Ti/$TiO_2$ surface was chemically modified to present an initiator for atom transfer radical polymerization, and poly(ethylene glycol) methacrylate (pEGMA) was polymerized from the surface. After activation of hydroxyl groups of poly(pEGMA) (pPEGMA) with N,N'-disuccinimidyl carbonate, biotin, a model compound, was conjugated to the pPEGMA films. The reactions were confirmed by infrared spectroscopy, X-ray photoelectron spectroscopy, contact angle goniometry, and ellipsometry. The biospecific binding of target proteins was also utilized to generate micropatterns of proteins on the Ti/$TiO_2$ surface.

A comprehensive review of techniques for biofunctionalization of titanium

  • Hanawa, Takao
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.6
    • /
    • pp.263-272
    • /
    • 2011
  • A number of surface modification techniques using immobilization of biofunctional molecules of Titanium (Ti) for dental implants as well as surface properties of Ti and Ti alloys have been developed. The method using passive surface oxide film on titanium takes advantage of the fact that the surface film on Ti consists mainly of amorphous or low-crystalline and nonstoichiometric $TiO_2$. In another method, the reconstruction of passive films, calcium phosphate naturally forms on Ti and its alloys, which is characteristic of Ti. A third method uses the surface active hydroxyl group. The oxide surface immediately reacts with water molecules and hydroxyl groups are formed. The hydroxyl groups dissociate in aqueous solutions and show acidic and basic properties. Several additional methods are also possible, including surface modification techniques, immobilization of poly(ethylene glycol), and immobilization of biomolecules such as bone morphogenetic protein, peptide, collagen, hydrogel, and gelatin.

Properties of $TiO_2$ thin films deposited by ion-beam assisted reactive magnetron sputtering (이온빔 보조 반응이온 마그네트론 스퍼터링으로 증착된 $TiO_2$박막의 특성)

  • 김성화;이재홍;황보창권
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.3
    • /
    • pp.141-150
    • /
    • 2002
  • Titanium oxide thin films were deposited by DC reactive magnetron sputtering(RMS) with Ar ion-beam assistance using end-Hall ion source at low oxygen partial pressure and long target-to-substrate distance. The optical and structural properties of deposited films were investigated by the measurement of measured transmittance and reflectance, atomic force microscope(AFM), and X-ray diffraction(XRD). The results show that the Ax ion-beam assisted RMS for titanium oxide thin films induces the higher packing density, lower absorption, and smoother surface than the conventional RMS, suggesting that it can be employed in deposition of optical dielectric coatings.