Properties of $TiO_2$ thin films deposited by ion-beam assisted reactive magnetron sputtering

이온빔 보조 반응이온 마그네트론 스퍼터링으로 증착된 $TiO_2$박막의 특성

  • Published : 2002.09.01

Abstract

Titanium oxide thin films were deposited by DC reactive magnetron sputtering(RMS) with Ar ion-beam assistance using end-Hall ion source at low oxygen partial pressure and long target-to-substrate distance. The optical and structural properties of deposited films were investigated by the measurement of measured transmittance and reflectance, atomic force microscope(AFM), and X-ray diffraction(XRD). The results show that the Ax ion-beam assisted RMS for titanium oxide thin films induces the higher packing density, lower absorption, and smoother surface than the conventional RMS, suggesting that it can be employed in deposition of optical dielectric coatings.

낮은 산소 부분압과 긴 타깃-기판 거리에서 DC 반응이온 마그네트론 스퍼터링(reactive magnetron sputtering ; RMS) 방법으로 $TiO_2$ 박막을 증착하였으며, 증착되는 박막에 end-Hall 이온 소스를 이용하여 아르곤 이온빔 보조 증착을 해 주었다. $TiO_2$ 박막의 광학적 특성은 분광광도계에서 측정된 투과율과 반사율 스펙트럼을 이용하여 분석하였고, 구조적 특성은 AFM과 XRD를 이용하여 분석하였다. 이온빔 보조 RMS 방법으로 증착된 $TiO_2$ 박막은 일반적인 RMS로 증착된 박막보다 조밀도가 높고, 흡수가 낮으며, 표면거칠기가 작았다. 본 연구에서는 이온빔 보조 RMS 방법이 유전체 광학박막 코팅에 적용될 수 있음을 보여준다.

Keywords

References

  1. Handbook of deposition technologies for films and coatings: Science, Technology and Applications(2nd ed.) R. F. Bunshah
  2. Vacuum v.51 no.4 A. Kinbara;E. Kusano;I. Kondo https://doi.org/10.1016/S0042-207X(98)00237-1
  3. Thin Film Processes Ⅱ J. L. Vossen;W. Kern
  4. Thin Solid Films v.351 R. P. Howson;N. Danson;I. Safi https://doi.org/10.1016/S0040-6090(99)00081-4
  5. Thin Soild Films v.377-378 N. Martin;A. R. Bally;P. Hones;R. Sanjin$\'{e}$s;F. L$\'{e}$vy https://doi.org/10.1016/S0040-6090(00)01440-1
  6. Thin Solid Films v.281-282 E. Kusano;A. Kinbara https://doi.org/10.1016/0040-6090(96)08665-8
  7. Surf. Coat. Technol. v.127 I. Safi https://doi.org/10.1016/S0257-8972(00)00566-1
  8. Surf. Coat. Technol. v.94-95 J. C. Sellers https://doi.org/10.1016/S0257-8972(97)00438-6
  9. J. Non-Cryst. Solids v.218 J. Szczyrbowski;G. Br$\"{a}$uer;M. Ruske;G. Teschner;A. Zmelty https://doi.org/10.1016/S0022-3093(97)00239-1
  10. Surf. Coat. Technol. v.112 J. Szczyrbowski;G. Br$\"{a}$uer;M. Ruske;J. Bartella;J. Schroeder;A. Zmelty https://doi.org/10.1016/S0257-8972(98)00751-8
  11. Vacuum v.46 no.7 S. Mohan;M. G. Krishna https://doi.org/10.1016/0042-207X(95)00001-1
  12. Appl. Opt. v.34 no.4 H. Takashashi https://doi.org/10.1364/AO.34.000667
  13. Thin Solid Films v.283 M. Gilo;N. Croitoru https://doi.org/10.1016/0040-6090(95)08500-9
  14. Surf. Coat. Technol. v.112 H. K. Pulker https://doi.org/10.1016/S0257-8972(98)00764-6
  15. US Patent 5,851,365 M. A. Scobey
  16. Appl. Opt. v.40 no.10 R.-Y. Tsai;C. S. Chang;C. W. Chu;T. Chen;F. Dai;D. Lin;S. Yan;A. Chang https://doi.org/10.1364/AO.40.001593
  17. 박막광학 황보창권
  18. The Review of Laser Engineering v.24 C. K. Hwangbo;H. J. Cho https://doi.org/10.2184/lsj.24.103
  19. Appl. Opt. v.35 no.28 H. J. Cho;C. K. Hwangbo https://doi.org/10.1364/AO.35.005545
  20. Surf. Coat. Technol. v.110 N. Martin;C. Rousselot https://doi.org/10.1016/S0257-8972(98)00689-6
  21. J. Vac. Sci. Technol. v.A4 no.3 J. J. Cuomo;S. M. Rossnagel
  22. J. Vac. Sci. Technol. v.20 no.1 R. Adachi;K. Takeshita https://doi.org/10.1116/1.571320
  23. Thin Film Processes Ⅱ J. L. Vossen;W. Kern
  24. Coatings on glass H. K. Pulker
  25. Thin-film optical filters(2nd ed.) H. A. Macleod