• Title/Summary/Keyword: Titanium oxide films

Search Result 95, Processing Time 0.024 seconds

The Characteristics of Titanium Oxide Films Deposited by the Nozzle-type HCP RT-MOCVD (노즐 형태 HCP RT-MOCVD에 의해 증착된 티타늄 산화막 특성)

  • Jung, Il-hyun
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.194-200
    • /
    • 2006
  • Titanium oxide films were deposited by the nozzle type HCP RT-MOCVD for the application of metal-oxide films. In the case of TTNB, after depositing films, films must be annealed at a proper temperature, but in the case of titanium ethoxide, titanium oxide films could be directly deposited by titanium ethoxide without general annealing. We could confirm that ratio of O to Ti in the films was about 2 : 1 at RF-power of 240 watt, distance between cathode and substrate of 3 cm, deposition time of 20 min, and ratio of Ar to $O_2$ of 1 : 1. Therefore, we could obtain the titanium oxide film deposited by the nozzle type HCP RT-MOCVD without an annealing process and could apply in the metal-oxide deposition process at a low temperature.

Titanium Oxide Film : A New Biomaterial For Artificial Heart Valve Prepared by Ion Beam Enhanced Deposition

  • Liu, Xianghuai;Zhang, Feng;Zheng, Zhihong;Huang, Nan
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.1-15
    • /
    • 1997
  • Titanium oxide films were prepared by ion beam enhanced deposition where the films were synthesized by deposition titianium atoms and simultaneously bombarding with xenon ion beam at an energy of 40 keV in an $O_2$ environ,ent. Structure and composition of titanium oxide films were investigated by X-ray Doffractopm (XRD) Ritjerfprd Backscattering Spectroscopy (RBS) and X-ray Diffraction(XRD) Rutherford Backscattering Spectroscopy (RBS) and X-ray photoelectron spectroscopy (XPS) The results show that thestructure of the prepared films exhibit a rutile phase structure wit high(200) orientation and the O/Ti ratio of the titanium oxide films was about 2:1 XPS anlysis shows that $Ti^{2+},Ti^{3+}\;and\;Ti^{4+}$ chemical states exist on the titanium oxide films. the blood compatibility of the titanium oxide films was studied by measurements of blood clotting time and platelet adhesion. The results show that the anticoagulation property of titanium oxide films improved significantly and better than that of LTI-carbon which was widely used to fabricate artificial heart valve.

  • PDF

The Effect of Sputtering Conditions on the Electrochromic Properties of Titanium Oxide Thin Films (스퍼터링 조건이 티탄산화물박막의 전기적 착색 특성에 미치는 영향)

  • Lee, Kil-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.55-61
    • /
    • 2006
  • Titanium oxide ($TiO_2$) films are deposited on the indium tin oxide (ITO) substrate in an $Ar/O_2$ atmosphere by using reactive RF (Radio Frequency) magnetron sputtering technique, and Electrochromic properties and durability of $TiO_2$ films deposited at different preparation conditions are investigated by using UV-VIS spectrophotometer and cyclic voltammetry Li+ interalation/deintercalation in $TiO_2$ films shows that the electrochromic properties and durability of as-deposited films strongly depend on gas pressure $TiO_2$ films formed in our sputtering conditions are found to remain transparent, irrespective of their Li+ ion contents. The optimum sputtering conditions for film as passive counter electrode in electrochromic devices are working pressure of $1.0\;{\times}\;10^{-2}\;torr$ and oxygen flow raes of $10{\sim}15\;sccm$, respectively.

Electrochemical Studies on the Mechanism of the Fabrication of Ceramic Films by Hydrothermal-Electrochemical Technique

  • Zhibin Wu;Masahiro Yoshimura
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.869-874
    • /
    • 1999
  • In this paper, electrochemical techniques are used to investigate hydrothermal-electrochemically formation of barium titanate (BT) ceramic films. For comparison, the electrochemical behaviors of anodic titanium oxide films formed in alkaline solution were also investigated both at room temperature and in hydrothermal condition at 150.0 ℃. Film structure and morphology were identified by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Titanium oxide films produced at different potentials exhibit different film morphology. The breakdown of titanium oxide films anodic growth on Ti electrode plays an important roles in the formation of BT films. BT films can grow on anodic oxide/metal substrate interface by short-circuit path, and the dissolution-precipitation processes on the ceramic film/solution interface control the film structure and morphology. Based upon the current experimental results and our previous work, extensively schematic proce-dures are proposed to model the mechanism of ceramic film formation by hydrothermal-electrochemical method.

Durability Improvement of Electrochromic Tungsten Oxides Films

  • Yang, J.Y.;Kim, J.W.;Kang, G.H.;K.D.Ko;Lee, G.D.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.157-157
    • /
    • 1999
  • Electrochromic tungsten oxide films were prepared by the electron beam deposition, and the dependence of the electrochemical stability and the optical properties on the titanium concentration, and on the annealing temperature, that was investigated. coloring and bleaching experiments were repeated by cyclic voltammetry in a propylene carbonate solution of LiClO4. Spectrometry was used to assess the stability of the transmittance in the degraded films. Tungsten oxide films with titanium contents of about 10~15 mol% were found to be most stable, undergoing the least degradation during the repeated for coloring and bleaching cycles. The reason for this small amount of degradation was the reduction of lithium ion trapping sites in the films, which results in an increased durability. Tungsten oxide films with titanium contents of about 20 mol% were annealed at 20$0^{\circ}C$ for 1 hour, and this results showed that durability of films were increased.

  • PDF

Characteristics of TiO2 Thin Films Fabricated by R.E, Magnetron Sputtering (R.F Magnetron Sputtering법으로 제조한 TiO2 박막의 특성)

  • Chu Y. H.;Choi D. K.
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.821-827
    • /
    • 2004
  • Titanium oxide thin films were prepared on Si(100) substrates by R.F. magnetron reactive sputtering at $30\sim200watt$ R.F power range, and annealed at $600^{\circ}C\sim800^{\circ}C$ for 1 hour. The properties of $TiO_2$ thin films were analyzed using x-ray, ${\alpha}-step$, ellipsometer, scanning electron microscopy, and FT-IR spectrometer. Upon in-situ depositions, the initial phase of $TiO_2$ thin film showed non-crystalline phase at R.F. power $30\sim100$ watt. The crosssection of $TiO_2$ thin films were sbserved to be the columnar structure. With the increasing R.F power and annealing temperature, the grain size, crystallinity, refractive index, and void size of titanium oxides showed a tended to increase. The FT-IR transmittance spectra of titanium oxide thin films have the obsorption band of Ti-O bond, Si-O bond, Si-O-Ti bond and O-H bond. With the increase of R.F. power and annealing temperature, these films have the stronger bond structures. It is considered that such a phenomena is due to phase transition and good crystallinity

Comparison of transparent conductive indium tin oxide, titanium-doped indium oxide, and fluorine-doped tin oxide films for dye-sensitized solar cell application

  • Kwak, Dong-Joo;Moon, Byung-Ho;Lee, Don-Kyu;Park, Cha-Soo;Sung, Youl-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.684-687
    • /
    • 2011
  • In this study, we investigate the photovoltaic performance of transparent conductive indium tin oxide (ITO), titanium-doped indium oxide (ITiO), and fluorine-doped tin oxide (FTO) films. ITO and ITiO films are prepared by radio frequency magnetron sputtering on soda-lime glass substrate at $300^{\circ}C$, and the FTO film used is a commercial product. We measure the X-ray diffraction patterns, AFM micrographs, transmittance, sheet resistances after heat treatment, and transparent conductive characteristics of each film. The value of electrical resistivity and optical transmittance of the ITiO films was $4.15{\times}10^{-4}\;{\Omega}-cm$. The near-infrared ray transmittance of ITiO is the highest for wavelengths over 1,000 nm, which can increase dye sensitization compared to ITO and FTO. The photoconversion efficiency (${\eta}$) of the dye-sensitized solar cell (DSC) sample using ITiO was 5.64%, whereas it was 2.73% and 6.47% for DSC samples with ITO and FTO, respectively, both at 100 mW/$cm^2$ light intensity.

Fluid Flow in Plasma Deposition Reactor and Characteristics of Titanium Oxide Films Deposited at Room Temperature (플라즈마 증착 반응기에서 유체흐름과 상온에서 증착된 티타늄 산화막 특성)

  • Jung, Ilhyun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.438-443
    • /
    • 2007
  • Titanium oxide films were deposited by the HCP (hollow cathode plasma) reactor at room temperature. With results of simulation about HCP reactor, the temperature profile is uniform on substrate regardless of the heat generation at cathode. The velocity profile on the surface of substrate is more uniform with increasing the gap between cathode and substrate, and surface roughness was decreased with increasing the gap between cathode and substrate. We could confirm that the composition of oxide increased with RF-power, and the ratio of O to Ti in the films was about 2 : 1 at RF-power of 240 watt and distance between cathode and substrate of 3 cm.

Characterization of Surface at Ti Oxide Films Converted by Anodic Spark Discharge (양극산화 불꽃 방전에 의한 Ti 산화피막의 표면특성)

  • Song, Jae-Joo;Han, Byung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.545-546
    • /
    • 2006
  • This study was performed to investigate the surface properties of electrochemically oxidized pure titanium by anodic spark discharging method. Commercially pure titanium plates of $10{\times}20{\times}1[mm]$ in dimensions were polished sequentially emery paper. Anodizing was performed at current density of $76.2\;[mA/cm^2]$, application voltage of 290, 350, 400 [V] using a regulated DC power supply, which allowed automatic transition constant current when a preset maximum voltage has been reached. The Ti surface oxided films was characterized by scanning electron microscope(SEM). The precipitation of HA(Hydroxyapatite) crystals on anodized surface was greatly accelerated by hydrothermal treatment. The concentrations of DL-$\alpha$-Glycerolphosphate Magnesiurn(DL-$\alpha$-GP-Mg) salt and Ca acetate in an electrolyte was highly affected the precipitation of HA crystals converted by Ti Anodized oxide films by Shape of Impulse Voltage.

  • PDF

Color Evolution in Anodized Titanium (양극산화로 제작된 티타늄의 발색효과 연구)

  • 송오성;홍석배;이정임
    • Journal of Surface Science and Engineering
    • /
    • v.35 no.5
    • /
    • pp.273-278
    • /
    • 2002
  • We oxidized pure titanium by anodizing oxidation process in the range of 590V, within 1.5A, 30seconds. we investigated color evolution with a spectrophotometer. Surface images and surface roughness were characterized by an optical microscope and an atomic force microscope, respectively. Below the thickness of 40 $\mu\textrm{m}$, metallic yellow, blue, and pink colorsn were obtained. Lightness decreased, increased, and decreased again as titanium oxide thickness increased. Blue color at the applied voltage of 30V showed the best lightness and reproducibility with surface roughness below l$\mu\textrm{m}$. Bare titanium and titanium oxide films had micro pits more than 10ea/$\mu\textrm{m}^2$. We report that we successfully made colors by varing thickness below 40$\mu\textrm{m}$ with anodizing oxidation of method.