• 제목/요약/키워드: Titanium alloy powder

검색결과 54건 처리시간 0.02초

Ti-6.0wt%Al-4.0wt%V 합금 용탕의 금형 주조 (Permanent Mold Casting of Ti-6.0wt%Al-4.0wt%V Alloy Melt)

  • 강장원;김명용;이상길;이해중;김경훈;이효수;임성철;권혁천
    • 한국주조공학회지
    • /
    • 제27권3호
    • /
    • pp.135-139
    • /
    • 2007
  • To produce higher quality of titanium casting at a lower cost, the new titanium casting technology by using a permanent metal mold was developed and applied to fabricate hip joint for biomedical application. The present study was carried out to investigate the reactivity and fluidity of the Ti-6.0 wt%Al-4.0 wt%V alloy with metal mold by applying various ceramic powders coating on the mold surface. The molten titanium for manufacturing hip joint was poured into steel mold. No reaction layer was formed on the surface of specimens fabricated steel mold coated with $Y_2O_3$ powder.

Advancement in Powder Metallurgy of Aluminum Alloys

  • Takeda, Yoshinobu
    • 한국분말재료학회지
    • /
    • 제5권4호
    • /
    • pp.340-344
    • /
    • 1998
  • Along with the growth of conventional ferrous powder metallurgy (PM), PM of aluminum alloys has been intensively investigated in Japan. Although rapidly solidified aluminum alloy powder was first used in the USA,/sup 1)/ commercialization for consumer market was first realized in Japan./sup 2)/ In order to achieve the viable cost-performance including Near Net Shape (NNS) formability, we developed three processes, powder extrusion, powder forging and sintering. The new powder extrusion process does not use either capsulation or vacuum degassing. The new powder forging does not need lateral flow. The new sintering process does not use liquid phase. The performance achieved by the processes is outstanding mechanical or physical properties that has potential to substitute cast iron, steel, titanium Metal Matrix Composite (MMC) or Ingot Metallurgy (IM) aluminum alloys. Cooperation with customers, powder suppliers and research associations contributed to the advancement of PM aluminum alloys in Japan.

  • PDF

티타늄 합금 분말 소결체의 고온 변형 거동 및 미세조직 연구 (Hot Deformation Behavior and Microstructural Evolution of Powder Metallurgy Ti-6Al-4V Alloy)

  • 김영무;송영범;이성호;권영삼
    • 한국분말재료학회지
    • /
    • 제21권4호
    • /
    • pp.277-285
    • /
    • 2014
  • The effects of processing parameters on the flow behavior and microstructures were investigated in hot compression of powder metallurgy (P/M) Ti-6Al-4V alloy. The alloy was fabricated by a blended elemental (B/E) approach and it exhibited lamellar ${\alpha}+{\beta}$ microstructure. The hot compression tests were performed in the range of temperature $800-1000^{\circ}C$ with $50^{\circ}C$ intervals, strain rate $10^{-4}-10s^{-1}$, and strain up to 0.5. At $800-950^{\circ}C$, continuous flow softening after a peak stress was observed with strain rates lower than $0.1s^{-1}$. At strain rates higher than $1s^{-1}$, rapid drop in flow stress with strain hardening or broad oscillations was recorded. The processing map of P/M Ti-6Al-4V was designed based on the compression test and revealed the peak efficiency at $850^{\circ}C$ and $0.001s^{-1}$. As the processing temperature increased, the volume fraction of ${\beta}$ phase was increased. In addition, below $950^{\circ}C$, the globularization of phase at the slower strain rate and kinking microstructures were found. Based on these data, the preferred working condition of the alloy may be in the range of $850-950^{\circ}C$ and strain rate of $0.001-0.01s^{-1}$.

기계적 밀링과 플라즈마 활성 소결법에 의한 TiB2 분산 Cu기 복합재료 제조 (Synthesis of TiB2 Dispersed Cu Matrix Composite Material by the Combination of the Mechanical Milling and Plasma Activated Sintering Process)

  • 김경주;이길근;박익민
    • 한국분말재료학회지
    • /
    • 제14권5호
    • /
    • pp.292-297
    • /
    • 2007
  • The present study was focused on the synthesis of a $TiB_2$ dispersed copper matrix composite material by the combination of the mechanical milling and plasma activated sintering processes. The $Cu/TiB_2$ mixed powder was prepared by the combination of the mechanical milling and reduction processes using the copper oxide and titanium diboride powder as the raw material. The synthesized $Cu/TiB_2$ mixed powder was sintered by the plasma activated sintering process. The hardness and electric conductivity of the sintered bodies were measured using micro vickers hardness and four probe method, respectively. The relative density of $Cu/TiB_2$ composite material sintered at $800^{\circ}C$ showed about 98% of theoretical density. The $Cu-1vol%TiB_2$ composite material has a hardness of about 130Hv and an electric conductivity of about 85% IACS. The hardness and electric conductivity of $Cu-3vol%TiB_2$ composite material were about 140 Hv and about 45% IACS, respectively.

레이저 분말적층 방식을 이용한 금속 3D 프린터 개발 및 티타늄 합금 부품 제조공정 최적화 (Development of a Metal 3D Printer Using Laser Powder Deposition and Process Optimization for Fabricating Titanium Alloy Parts)

  • 정원종;권영삼;김동식
    • 한국레이저가공학회지
    • /
    • 제18권3호
    • /
    • pp.1-5
    • /
    • 2015
  • A 3D printer based on laser powder deposition (LPD), also known as DED (direct energy deposition), has been developed for fabricating metal parts. The printer uses a ytterbium fiber laser (1070nm, 1kW) and is equipped with an Ar purge chamber, a three-dimensional translation stage and a powder feeding system composed of a powder chamber and delivery nozzles. To demonstrate the performance of the printer, a tapered cylinder of 320mm in height has been fabricated successfully using Ti-6Al-4V powders. The process parameters including the laser output power, the scan speed, and the powder feeding rate have been optimized. A 3D printed test specimen shows mechanical properties (yield strength, ultimate tensile strength, and elongation) exceeding the criteria to employed in a variety of Ti alloy applications.

플라즈마 전해 산화처리된 Ti-6Al-4V합금의 표면특성에 미치는 울라스토나이트 코팅효과 (Effects of Wollastonite Coating on Surface Characteristics of Plasma Electrolytic Oxidized Ti-6Al-4V Alloy)

  • 고재은;이종국;최한철
    • Corrosion Science and Technology
    • /
    • 제22권4호
    • /
    • pp.257-264
    • /
    • 2023
  • Ti-6Al-4V alloys are mainly used as dental materials due to their excellent biocompatibility, corrosion resistance, and chemical stability. However, they have a low bioactivity with bioinertness in the body. Therefore, they could not directly bond with human bone. To improve their applications, their bone bonding ability and bone formation capacity should be improved. Thus, the objective of this study was to improve the bioinert surface of titanium alloy substrate to show bioactive characteristics by performing surface modification using wollastonite powder. Commercial bioactive wollastonite powder was successfully deposited onto Ti-6Al-4V alloy using a room temperature spray process. It was found that wollastonite-coated layer showed homogeneous microstructure and uniform thickness. Corrosion resistance of Ti-6Al-4V alloy was also improved by plasma electrolytic oxidation treatment. Its wettability and bioactivity were also greatly increased by wollastonite coating. Results of this study indicate that both plasma electrolytic oxidation treatment and wollastonite coating by room temperature spray process could be used to improve surface bioactivity of Ti-6Al-4V alloy substrate.

Effects of Cr and Fe Addition on Microstructure and Tensile Properties of Ti-6Al-4V Prepared by Direct Energy Deposition

  • Byun, Yool;Lee, Sangwon;Seo, Seong-Moon;Yeom, Jong-taek;Kim, Seung Eon;Kang, Namhyun;Hong, Jaekeun
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1213-1220
    • /
    • 2018
  • The effects of Cr and Fe addition on the mechanical properties of Ti-6Al-4V alloys prepared by direct energy deposition were investigated. As the Cr and Fe concentrations were increased from 0 to 2 mass%, the tensile strength increased because of the fine-grained equiaxed prior ${\beta}$ phase and martensite. An excellent combination of strength and ductility was obtained in these alloys. When the Cr and Fe concentrations were increased to 4 mass%, extremely fine-grained martensitic structures with poor ductility were obtained. In addition, Fe-added Ti-6Al-4V resulted in a partially melted Ti-6Al-4V powder because of the large difference between the melting temperatures of the Fe eutectic phase (Ti-33Fe) and the Ti-6Al-4V powder, which induced the formation of a thick liquid layer surrounding Ti-6Al-4V. The ductility of Fe-added Ti-6Al-4V was thus poorer than that of Cr-added Ti-6Al-4V.

Morphologies of Brazed NiO-YSZ/316 Stainless Steel Using B-Ni2 Brazing Filler Alloy in a Solid Oxide Fuel Cell System

  • Lee, Sung-Kyu;Kang, Kyoung-Hoon;Hong, Hyun-Seon;Woo, Sang-Kook
    • 한국분말재료학회지
    • /
    • 제18권5호
    • /
    • pp.430-436
    • /
    • 2011
  • Joining of NiO-YSZ to 316 stainless steel was carried out with B-Ni2 brazing alloy (3 wt% Fe, 4.5 wt% Si, 3.2 wt% B, 7 wt% Cr, Ni-balance, m.p. 971-$999^{\circ}C$) to seal the NiO-YSZ anode/316 stainless steel interconnect structure in a SOFC. In the present research, interfacial (chemical) reactions during brazing at the NiO-YSZ/316 stainless steel interconnect were enhanced by the two processing methods, a) addition of an electroless nickel plate to NiO-YSZ as a coating or b) deposition of titanium layer onto NiO-YSZ by magnetron plasma sputtering method, with process variables and procedures optimized during the pre-processing. Brazing was performed in a cold-wall vacuum furnace at $1080^{\circ}C$. Post-brazing interfacial morphologies between NiO-YSZ and 316 stainless steel were examined by SEM and EDS methods. The results indicate that B-Ni2 brazing filler alloy was fused fully during brazing and continuous interfacial layer formation depended on the method of pre-coating NiO-YSZ. The inter-diffusion of elements was promoted by titanium-deposition: the diffusion reaction thickness of the interfacial area was reduced to less than 5 ${\mu}m$ compared to 100 ${\mu}m$ for electroless nickel-deposited NiO-YSZ cermet.

타이타늄 합금 분말의 열적산화를 통한 TiO2 나노와이어의 합성 (Synthesis of TiO2 Nanowires by Thermal Oxidation of Titanium Alloy Powder)

  • 김유영;조권구
    • 한국분말재료학회지
    • /
    • 제25권1호
    • /
    • pp.48-53
    • /
    • 2018
  • One-dimensional rutile $TiO_2$ is an important inorganic compound with applicability in sensors, solar cells, and Li-based batteries. However, conventional synthesis methods for $TiO_2$ nanowires are complicated and entail risks of environmental contamination. In this work, we report the growth of $TiO_2$ nanowires on a Ti alloy powder (Ti-6wt%Al-4wt%V, Ti64) using simple thermal oxidation under a limited supply of $O_2$. The optimum condition for $TiO_2$ nanowire synthesis is studied for variables including temperature, time, and pressure. $TiO_2$ nanowires of ${\sim}5{\mu}m$ in length and 100 nm in thickness are richly synthesized under the optimum condition with single-crystalline rutile phases. The formation of $TiO_2$ nanowires is greatly influenced by synthesis temperature and pressure. The synthesized $TiO_2$ nanowires are characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM).

Ti-6Al-4V 및 Ti-8Al-1Mo-1V 합금 스크랩을 이용한 저산소 분말 제조와 탈산방법 비교 (Preparation of Low Oxygen Content Powder from Ti-6Al-4V and Ti-8Al-1Mo-1V Alloy Scraps with Deoxidation in Solid State Process)

  • 오정민;서창열;권한중;임재원;노기민
    • 자원리싸이클링
    • /
    • 제24권1호
    • /
    • pp.21-27
    • /
    • 2015
  • Ti-6Al-4V 및 Ti-8Al-1Mo-1V (AMS 4972) 합금 스크랩을 대상으로 수소화-탈수소화(HDH) 기술로 분말을 제조하고 칼슘 접촉식과 비접촉식 방법으로 탈산을 실시하여 탈산효과를 비교하였다. 타이타늄을 대상으로 한 이전 연구결과에서는 비접촉식 탈산법이 탈산 효과가 더 크다고 보고되었으나 산소함유량을 분석한 결과 Ti-6Al-4V 및 Ti-8Al-1Mo-1V 합금 분말 모두 비접촉식으로 탈산한 분말의 산소함유량이 더 높은 것으로 밝혀졌다. 따라서, 본 연구에서는 XRD와 가스분석기를 이용하여 합금 내에 가장 많이 함유되어 있는 알루미늄이 비접촉식 탈산 공정 중 탈산에 미치는 영향을 조사하였다.