• Title/Summary/Keyword: Titanium Nitride (TiN)

Search Result 112, Processing Time 0.022 seconds

A Study on the Tribological Characteristics of Surface Modification (The 1st) (표면개질의 트라이볼로지 특성에 관한 연구(제1보))

  • Oh, Seong-Mo;Chae, Wang-Seok;Lee, Bong-Goo;Kim, Dong-Hyun;,
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.145-150
    • /
    • 1999
  • We have studied on the tribological characteristics of surface modification by Arc Ion Implantation(AIP) coating method. Coating materials were deposited by the Titanium carbide(TiC) and Titanium nitride(TiN). An experimental process was established to determine the tribological characteristics of friction and wear behaviour with the variation of applied load, temperature and the time by the Falex friction and wear test machine. The results, It can be improved that when the surface modification of hard coatings(TiC, TiN) was deposited steel, the tribological characteristics become better. It is argued that improved because of excellence of the anti-wear, the extreme pressure properties and the heat stability.

  • PDF

Properties of TiAlSiN Films by Hybrid Process of Cathodic Arc Deposition & Sputtering (Hybrid 공정으로 코팅된 TiAlSiN 박막의 특성 연구)

  • Song, Min-A;Yang, Ji-Hun;Jeong, Jae-Hun;Kim, Seong-Hwan;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.68-68
    • /
    • 2015
  • 질화 티타늄(titanium nitride; TiN)은 색상이 미려하고 물리적 특성이 우수한 특성에도 불구하고 내산화성이 낮아 이를 해결하기 위해서 TiN에 Al을 첨가한 TiAlN 소재가 개발되었다. 하지만 난삭재 가공용 공구의 사용 온도가 $800^{\circ}C$이상인 점을 고려하여 $800^{\circ}C$ 이상의 고온 환경에서도 산화가 일어나지 않는 고경도 박막 소재가 요구되고 있으며 TiAlN 소재에 Si을 첨가하면 내산화성이 향상된다는 연구결과가 보고되고 있다. 본 연구에서는 음극 아크 증착과 스퍼터링을 동시에 이용한 하이브리드 공정으로 제조한 TiAlSiN 박막의 Si 함량에 따른 미세구조, 물리적 특성 그리고 내산화성을 평가하였다.

  • PDF

Correlation of Sintering Parameters with Density and Hardness of Nano-sized Titanium Nitride reinforced Titanium Alloys using Neural Networks

  • Maurya, A.K.;Narayana, P.L;Kim, Hong In;Reddy, N.S.
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.365-372
    • /
    • 2020
  • Predicting the quality of materials after they are subjected to plasma sintering is a challenging task because of the non-linear relationships between the process variables and mechanical properties. Furthermore, the variables governing the sintering process affect the microstructure and the mechanical properties of the final product. Therefore, an artificial neural network modeling was carried out to correlate the parameters of the spark plasma sintering process with the densification and hardness values of Ti-6Al-4V alloys dispersed with nano-sized TiN particles. The relative density (%), effective density (g/㎤), and hardness (HV) were estimated as functions of sintering temperature (℃), time (min), and composition (change in % TiN). A total of 20 datasets were collected from the open literature to develop the model. The high-level accuracy in model predictions (>80%) discloses the complex relationships among the sintering process variables, product quality, and mechanical performance. Further, the effect of sintering temperature, time, and TiN percentage on the density and hardness values were quantitatively estimated with the help of the developed model.

Synthesis of Ultrafine and Less Agglomerated TiCN Powders by Magnesiothermic Reduction (마그네슘 열환원에 의한 저응집 초미립 TiCN 분말합성)

  • Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.19 no.5
    • /
    • pp.356-361
    • /
    • 2012
  • The ultra-fine and less agglomerated titanium carbonitride particles were successfully synthesized by magnesiothermic reduction with low feeding rate of $TiCl_4+1/4C_2Cl_4$ solution. The sub-stoichiometric titanium carbide ($TiC_{0.5{\sim}0.6}$) particles were produced by reduction of chlorine component by liquid magnesium at $800^{\circ}C$ of gaseous $TiCl_4+1/4C_2Cl_4$ and the heat treatments in vacuum were performed for 5 hours to remove the residual magnesium and magnesium chloride mixed with produced $TiC_{{\sim}0.5}$. The final $TiC_{{\sim}0.5}N_{0{\sim}0.5}$ particle with near 100 nm in mean size and high specific surface area of $65m^2/g$ was obtained by nitrification under nitrogen gas at $1,150^{\circ}C$ for 2 hrs.

Adhesive Behaviors of the Aluminum Alloy-Based CrN and TiN Coating Films for Ocean Plant

  • Murakami, Ri-Ichi;Yahya, Syed Qamma Bin
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.106-115
    • /
    • 2012
  • In the present study, TiN and CrN films were coated by arc ion plating equipment onto aluminum alloy substrate, A2024. The film thickness was about 4.65 ${\mu}m$. TiN and CrN films were analyzed by X-ray diffraction and energy dispersive X-ray equipments. The Young's modulus and the micro-Vickers hardness of aluminum substrate were modified by the ceramic film coatings. The difference in Young's modulus between substrate and coating film would affect on the wear resistance. The critical load, Lc, was 75.8 N for TiN and 85.5 N for CrN. It indicated from the observation of optical micrographs for TiN and CrN films that lots of cracks widely propagated toward the both sides of scratch track in the early stage of MODE I. TiN film began to delaminate completely at MODE II stage. The substrate was finally glittered at MODE III stage. For CrN film, a few crack can be observed at MODE I stage. The delamination of film was not still occurred at MODE II and then was happened at MODE III. This agrees with critical load measurement which the adhesive strength was greater for CrN film than for TiN film. Consequently, it was difficult for CrN to delaminate because the adhesive strength was excellent against Al substrate. The wear process, which the film adheres and the ball transfers, could be enhanced because of the increase in loading. The wear weight of ball was less for CrN than for TiN. This means that the wear damage of ball was greater for TiN than for CrN film. It is also obvious that it was difficult to delaminate because the CrN coating film has high toughness. The coefficient of friction was less for CrN coating film than for TiN film.

Film Properties of MOCVD TiN prepared by TDMAT and TDMAT/$NH_3$ (TDMAT와 TDMAT/$NH_3$ 로 형성한 MOCVD(Metal Organic Chemical Vapor Deposition) Titanium Nitride 박막의 특성)

  • Baek, Su-Hyeon;Kim, Jang-Su;Park, Sang-Uk;Won, Seok-Jun;Jang, Yeong-Hak;O, Jae-Eung;Lee, Hyeon-Deok;Lee, Sang-In;Choe, Jin-Seok
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.775-780
    • /
    • 1995
  • Thin films of titanium nitride are formed using the tetrakis-dimethyl-amino-titanium (TDMAT(Ti[N($CH_3$)$_2$]$_4$)) under various conditions. The formation of TiN films has been obtained from the thermal decomposition of the Ti-precursor and the gas phase reaction between TDMAT and ammonia(NH$_3$). The resistivity of the MOCVD film can be attributed to their impurity. Especially the curve fitting graph of XPS data is revealed that main impurities in the films as carbon and oxygen make various interstitial compounds which has influenced physical and electrical properties of the film. In the contact hole with the aspect ratio of 3:1 and the diameter of 0.5${\mu}{\textrm}{m}$, the SEM morphology shows that the step coverage is more decreased in the films formed y flowing ammonia additionally than the films formed by pyrolysis of TDMAT and the phenomenon is probably related with the activation energy.

  • PDF

Processing and Characterization of RF Magnetron Sputtered TiN Films on AISI 420 Stainless Steel (AISI 420 stainless steel 기판위에 D.C magnetron sputtering 법으로 제조한 TiN 박막의 특성 평가)

  • Song, Seung-Woo;Choe, Han-Cheol;Kim, Young-Man
    • Journal of Surface Science and Engineering
    • /
    • v.39 no.5
    • /
    • pp.199-205
    • /
    • 2006
  • Titanium nitride (TiN) coatings were produced on AISI 420 stainless steel by DC magnetron sputtering of a Ti target changing the processing variables, such as the flow rate of $N_2/Ar$, substrate temperature and the existence of Ti interlayer between TiN coatings and substrates. The hardness and residual stress in the films were investigated using nanoindentation and a laser scanning device, respectively. The stoichiometry and surface morphology were investigated using X-Ray Diffraction and SEM. The corrosion property of the films was also studied using a polarization method in NaCl (0.9%) solution. Mechanical properties including hardness and residual stress were related to the ratio of $N_2/Ar$ flow rate. The corrosion resistance also was related to the processing variables.

음극 아크 증착으로 코팅된 TiAlN 박막의 물리적 특성 연구

  • Song, Min-A;Yang, Ji-Hun;Park, Hye-Seon;Jeong, Jae-Hun;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.159-159
    • /
    • 2012
  • 티타늄-알루미늄(Titanium-Aluminum) 질화물(Nitride)은 고경도 난삭재의 고능률 절삭 분야에 사용되는 공구의 수명 향상을 위한 표면처리 소재로 각광을 받고 있다. 본 연구에서는 아크 소스로 TiAl 타겟을 사용 하였으며, $N_2$ 유량을 변화시키며 코팅을 실시하였다. 그 결과 경도 883~2510 Hv로 나타나는 것을 확인하였다.

  • PDF

Principle of Oblique Angle Deposition and Its Application to Hard Coatings (빗각 증착 기술의 원리와 경질피막에의 응용)

  • Jeong, Jae-In;Yang, Ji-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.133-133
    • /
    • 2018
  • 증착(Vapor Deposition)이란 어떤 물질을 증기화 시켜 기판에 응축시키는 공정을 말하며 물리증착(Physical Vapor Deposition; PVD)과 화학증착(Chemical Vapor Deposition)으로 대별된다. 빗각 증착 (Oblique Angle Deposition; OAD) 기술은 입사 증기가 기판에 비스듬히 입사하도록 조절하여 코팅하는 물리증착 기술의 하나로 피막의 조직을 다양하게 제어할 수 있으며 따라서 피막의 특성 제어가 가능한 기술이다. 지금까지 빗각증착은 증기의 산란이 발생하지 않는 $10^{-5}$ 토르 이하의 고진공에서 이루어져 왔다. 본 연구에서는 플라즈마를 이용한 스퍼터링과 음극 아크 증착을 이용하여 질화티타늄(TiN; Titanium Nitride) 박막을 제조하고 그 특성을 평가하였다. TiN 박막은 내마모성 향상 및 장식용 코팅에 널리 이용되고 있다. 박막 제조시 특히 바이어스 전압을 박막 조직의 기울기를 제어하는 수단으로 이용하였고 빗각과 바이어스 전압을 이용하여 다층박막의 조직제어에 활용하였다. 박막의 미세구조와 방위, 경도를 SEM, XRD, Nano Indenter를 이용하여 측정하였고 반사율 및 박막의 조도는 Spectrophotometer와 조도 측정기를 이용하여 측정하였다. 기울어진 조직 및 V형태의 조직이 단층 및 다층의 피막에서 명확하게 관찰됨을 확인하였고 특히 마지막 층 제조시 바이어스 전압을 인가할 경우 탄성계수는 크게 변하지 않는 상황에서 경도가 증가함을 확인하였다.

  • PDF

Surface characteristics and biocompatibility of bioinert nitrides ion plated titanium implant (생불활성 질화물 이온도금된 티타늄 임프란트의 표면특성 및 생체적합성)

  • Chang, Kap-Sung;Kim, Heung-Joong;Park, Joo-Cheol;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.1
    • /
    • pp.209-231
    • /
    • 1999
  • Even though titanium(Ti) and its alloys are the most used dental implant materials, there are some problems that Ti wears easily and interferes normal osteogenesis due to the metal ions. Ti coated with bioactive ceramics such as hydroxyapatite has also such problems as the exfoliation or resorption of the coated layer, Recent studies on implant materials have been proceeding to improve physical properties of the implant substrate and biocompatibility of the implant surfaces. The purpose of the present study was to examine the physical property and bone tissue compatibility of bioinert nitrides ion plated Ti, Button type specimens(14mm in diameter, 2.32rrun in height) for the abrasion test and cytotoxicity test and thread type implants(3.75mm in diameter, 6mm in length) for the animal experiments were made from Ti(grade 2) and 316LVM stainless steel. Ti specimens were ion plated with TiN, ZrN by the low temperature arc vapor deposition, and the depth profile of the TiN/Ti, ZrN/Ti ion plated surface was examined by Auger Electron Spectroscopy. Three kind of button type specimens .of TiN/Ti, ZrN/Ti and Ti were used for abrasion test, and HEPAlClC7 cells and CCD cells were cultivated for 4 days with the specimens for cytotoxicity test. Thread type implants of TiN/Ti, ZrN/Ti, Ti, 316LVM were implanted on the femur of 6 adult dogs weighing 10kg-13kg. Two dogs were sacrified for histological examination after 45 days and 90 days, and four dogs were sacrified for the removal torque test of the implant') after 90 days. The removal torque force was measured by Autograph (Shimadzu Co., AGS-1000D series, Japan). Abrasion resistance of TiN/Ti was the highest, and that of ZrN/Ti and Ti were followed. The bioinert nitride ion plated Ti had much better abrasion resistance, compared with Ti, In the cytotoxicity test, the number of both cells were increased in all specimens, and there were no significant difference in cytotoxic reaction among all groups (p>0.1), In histological examination, 316LVM showed the soft tissue engagement in interface between the implant and bone, but the other materials after 45 days noted immature new bone formation in the medullary portion along the implant surface, and those after 90 days showed implant support by new bone formation in both the cortical and the medullary portion, The removal torque force of Tilv/Ti showed significantly higher than that of Ti(p(O,05). The difference in removal torque force between TiN/Ti and ZrN/Ti was not significant(p>0.05), and that of 316LVM was lowest among all groups(p<0.05). These results suggest that bioinert nitrides ion plated Ti can resolve the existing problems of Ti and bioactive ceramics, and it may be clinically applicable to human.

  • PDF