• Title/Summary/Keyword: Titania

Search Result 336, Processing Time 0.029 seconds

Preparation of TiO2 Nanoparticles from Titanium Tetraisopropoxide Using an Aerosol Microreactor (에어로졸 마이크로반응기에 의한 Titanium Tetraisopropoxide로부터 TiO2 나노입자 제조)

  • Choi, Jae Gil;Park, Kyun Young
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.609-615
    • /
    • 2005
  • $TiO_2$ particles, 30-300 nm in diameter, were prepared by thermal decomposition of titanium tetraisopropoxide (TTIP) using an aerosol microreactor, by which about $1{\mu}l$ of the liquid precursor is injected into an evaporator, 1 cc in volume, and vaporized precursor is then transported by nitrogen as a bolus to a tubular reactor 4 mm in diameter and 35 cm in length. Investigated were the effects of the reactor temperature and the concentration of TTIP vapor on the morphology, particle size distribution and crystalline structure of produced $TiO_2$ particles. With TTIP vapor concentration kept constant at 1 mol%, the reactor temperature was varied from 300 to 500 and $700^{\circ}C$. The primary particle size decreased with increasing the temperature, and the size distributions were mono-modal at 300 and $500^{\circ}C$, but bi-modal at $700^{\circ}C$. The TTIP vapor concentration was increased from 1 to 3.5 and 7 mol%, holding the reactor temperature at $700^{\circ}C$. The bi-modal distribution seen at the concentration of 1 mol% disappeared and the number of particles composing an agglomerate increased at the higher concentrations. These effects of the reactor temperature and the precursor concentration were discussed in comparison with experimental results reported earlier.

The Formation of ConTiOn+2 Compounds in CoOx/TiO2 Catalysts and Their Activity for Low-Temperature CO Oxidation (CoOx/TiO2 촉매상에 ConTiOn+2 화합물의 생성과 저온 CO 산화반응에 대한 촉매활성)

  • Kim, Moon-Hyeon;Ham, Sung-Won
    • Journal of Environmental Science International
    • /
    • v.17 no.8
    • /
    • pp.933-941
    • /
    • 2008
  • The formation of $Co_nTiO_{n+2}$ compounds, i.e., $CoTiO_3$ and $CO_2TiO_4$, in a 5wt% $CoO_x/TiO_2$ catalyst after calcination at different temperatures has been characterized via scanning electron microscopy (SEM), Raman and X-ray photoelectron spectroscopy (XPS) measurements to verify our earlier model associated with $CO_3O_4$ nanoparticles present in the catalyst, and laboratory-synthesized $Co_nTiO_{n+2}$ chemicals have been employed to directly measure their activity profiles for CO oxidation at $100^{\circ}C$. SEM measurements with the synthetic $CoTiO_3$ and $CO_2TiO_4$ gave the respective tetragonal and rhombohedral morphology structures, in good agreement with the earlier XRD results. Weak Raman peaks at 239, 267 and 336 $cm^{-1}$ appeared on 5wt% $CoO_x/TiO_2$ after calcination at $570^{\circ}C$ but not on the catalyst calcined at $450^{\circ}C$, and these peaks were observed for the $Co_nTiO_{n+2}$ compounds, particularly $CoTiO_3$. All samples of the two cobalt titanate possessed O ls XPS spectra comprised of strong peaks at $530.0{\pm}0.1$ eV with a shoulder at a 532.2-eV binding energy. The O ls structure at binding energies near 530.0 eV was shown for a sample of 5 wt% $CoO_x/TiO_2$, irrespective to calcination temperature. The noticeable difference between the catalyst calcined at 450 and $570^{\circ}C$ is the 532.2 eV shoulder which was indicative of the formation of the $Co_nTiO_{n+2}$ compounds in the catalyst. No long-life activity maintenance of the synthetic $Co_nTiO_{n+2}$ compounds for CO oxidation at $100^{\circ}C$ was a good vehicle to strongly sup port the reason why the supported $CoO_x$ catalyst after calcination at $570^{\circ}C$ had been practically inactive for the oxidation reaction in our previous study; consequently, the earlier proposed model for the $CO_3O_4$ nanoparticles existing with the catalyst following calcination at different temperatures is very consistent with the characterization results and activity measurements with the cobalt titanates.

Effects of Anodic Voltages of Photcatalytic TiO2 and Doping in H2SO4 Solutions on the Photocatalytic Activity (광촉매 TiO2의 황산용액에서의 양극산화전압과 도핑이 광촉매 활성에 미치는 영향)

  • Lee, Seung-Hyun;Oh, Han-Jun;Chi, Choong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.439-444
    • /
    • 2012
  • To compare the photocatalytic performances of titania for purification of waste water according to applied voltages and doping, $TiO_2$ films were prepared in a 1.0 M $H_2SO_4$ solution containing $NH_4F$ at different anodic voltages. Chemical bonding states of F-N-codoped $TiO_2$ were analyzed using surface X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the co-doped $TiO_2$ films was analyzed by the degradation of aniline blue solution. Nanotubes were formed with thicknesses of 200-300 nm for the films anodized at 30 V, but porous morphology was generated with pores of 1-2 ${\mu}m$ for the $TiO_2$ anodized at 180 V. The phenomenon of spark discharge was initiated at about 98 V due to the breakdown of the oxide films in both solutions. XPS analysis revealed the spectra of F1s at 684.3 eV and N1s at 399.8 eV for the $TiO_2$ anodized in the $H_2SO_4-NH_4F$ solution at 180 V, suggesting the incorporation of F and N species during anodization. Dye removal rates for the pure $TiO_2$ anodized at 30 V and 180 V were found to be 14.0% and 38.9%, respectively, in the photocatalytic degradation test of the aniline blue solution for 200 min irradiation; the rates for the F-N-codoped $TiO_2$ anodized at 30 V and 180 V were found to be 21.2% and 65.6%, respectively. From the results of diffuse reflectance absorption spectroscopy (DRS), it was found that the absorption edge of the F-N-codoped $TiO_2$ films shifted toward the visible light region up to 412 nm, indicating that the photocatalytic activity of $TiO_2$ is improved by appropriate doping of F and N by the addition of $NH_4F$.

Characteristics of Pearlescent Pigment using in Make-up Cosmetics (색조화장에 사용되는 진주광택 안료의 특성)

  • Kwak, Han-Ah;Choi, Eun-Young;Chang, Byung-Soo
    • Applied Microscopy
    • /
    • v.39 no.1
    • /
    • pp.41-48
    • /
    • 2009
  • We investigated the morphological characteristics of the pearlescent pigment by using scanning electron microscope, energy dispersive X-ray spectrometry and thermal analyzer. The result is that the shape of pigment is platy polygonal form through observing the pearlescent pigment by the scanning electron microscope. The size of pigment is various and not formed in standardized size or shape. The pigment flakes were measured about from $30{\mu}m$ to $300{\mu}m$. The tip of the piece of pigment is pointed shape or angled. The result of observing them by the scanning electron microscope in magnifying high power is that the edge and the lateral face of them is an round form and the measurement of thickness is about $9{\mu}m$. As well using the high magnification scanning electron microscope, the surface of the pigment flake observed like rugged as coating with the $TiO_2$ element, the diameter of the coating particle is around 60 nm, then the coating particle consists of granular substance. Analysis of the configuration elements of pearlescent pigment using by the energy dispersive X-ray spectrometry is that O, Si, C, Na, Ca, Ti, Zn detected in the surface of pigment and its lateral face identifies similar components. In thermal analysis, there are no contained quantity differences between them in beginning from $100^{\circ}C$ to $800^{\circ}C$ showing thermal analysis, 1.1% out of contained quantity reduced at $115^{\circ}C$, 1.7% dropped at $416^{\circ}C$, and 1.9% decreased at $797^{\circ}C$.

Titanium Geology and Metallurgical Processes from Applied Petrologic Viewpoints

  • Park, Won Choon
    • Economic and Environmental Geology
    • /
    • v.11 no.3
    • /
    • pp.89-98
    • /
    • 1978
  • Mineralogy, beneficiation, and processes of titanium ores are reviewed from petrographic viewpoints. The most important titanium minerals are ilmenite ($FeTiO_3$) and rutile ($TiO_2$). Ilmenite will play major role :for raw material, because rutile are rapidly diminishing. Thus, there is a need to develope a successful process for producing high grade Ti02 from ilmenite. Commercial, as well as R and D processes to treat more abundant ilmenite ores fall in three general classess: 1. Iron in ilmenite is partially or completely reduced and separated either physically or chemically. 2. Iron is reduced to ferrous state and chemically leached away from the titanium. 3. Ore is treated to make chlorides either selectively or with subsequent separation and purification of $TiC_4$. Routes and efficiencies of these process technologies are primarily influenced by the particular ore deposit to be mined and secondly by environmental considerations. One deposit parameters which influence ilmenite process technologies are: 1. Complexity of microtextures of ilmenite intergrown with Fe-oxide minerals. 2. Composition of concentrates; ilmenites contain minor amounts of substituted Mg, Mn, and V. These elements plus iron and gangue minerals can cause difficulties to complete reactions, substantial acid consumption, difficulties of removing waste solids, and waste disposal problems. Major contributions to be made by petrologists for process optimization are: characterization and interpretation of compositional and physical changes of raw materials and solids derived from process streams. These informations can play significant role in selecting and improving process steps for titania production.

  • PDF

Charge-Discharge Characteristics of Lithium Metal Polymer Battery Adopting PVdF-HFP/(SiO2, TiO2) Polymer Electrolytes Prepared by Phase Inversion Technique (상반전 기법으로 제조한 PVdF-HFP/(SiO2, TiO2) 고분자 전해질을 채용한 리튬금속 고분자 2차전지의 충방전 특성)

  • Kim, Jin-Chul;Kim, Kwang-Man
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.131-136
    • /
    • 2008
  • Silica- or titania-filled poly (vinylidene fluoride-co-hexafluoropropylene)-based polymer electrolytes were prepared by phase inversion technique using N-methyl-2-pyrrolidone and dimethyl acetamide as solvent and water as non-solvent. The polymer electrolytes were adopted to the lithium metal polymer battery using high-capacity cathode $Li[Ni_{0.15}Co_{0.10}Li_{0.20}Mn_{0.55}]O_2$ and lithium metal anode. After the repeated charge-discharge test for the cell, it was proved that the cell adopting the polymer electrolyte based on the phase-inversion membrane containing 40~50 wt% silica showed the highest discharge capacity (180 mAh/g) until 80th cycle and then abrupt capacity fade was just followed. The capacity fade might be due to the deposition of lithium dendrite on the polymer electrolyte, in which the capacity retention was no longer sustainable.

Synthesis of New Black Pigment; Carbon Black Pigment Capsulated into the Meso-pore of Silica as Black Pigment in Cosmetic (새로운 Black Color의 합성;화장품에서 블랙 색소로서 Meso-pore Silca에 캡슐레이션된 Carbon-black Silica)

  • Hye-in, Jang;Kyung-chul, Lee;Hee-chang , Ryoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.189-195
    • /
    • 2004
  • Carbon black have not been used as pigment material in cosmetic because of very low density and dispersity, but carbon black have applicable character as black pigment because of non-toxic, stable physico-chemical property, and black colority. In this study, mesoporous silica samples were synthesized by sol-gel reaction using surfactants-template method; TEOS (tetraethoxysilane) - a) PEO/lecithin, b) PEO/polyethylene glycol, c) lecithin/polyethylene glycol in ethanol/water solution. Synthesized organic-inorganic hybrid - silica were heat-treated in N2 condition at 500$^{\circ}C$. Mesoporous silica with black carbon in pore have the effective density and show the good dispersity in both hydrophilic and hydrophobic solvent. Properties of the samples were measured; specific surface area (750㎡/g) and pore size (4-6nm) using BET, pore structure (cylindrical type) using XRD, morphology (spherical powder with 0.1-0.5$\mu\textrm{m}$ partical size) of the samples using SEM. Carbon-silica black color applied to mascara, it shows a dark black colority and good dispersity as compared with the general black color titania pigment. Moreover, it is possible to control the density of black color pigment because it is possible to control pore volume and particle size of mesoporous silica properly. It show the good volume effects in mascara. That is why possible to apply all kinds of cosmetic products.

Selective Catalytic Oxidation of Hydrogen Sulfide Using $V_{2}O_{5}-TiO_2$ Catalyst Prepared by Nonhydrolytic Sol-Gel Method (비가수분해 솔-젤법으로 제조한 $V_{2}O_{5}-TiO_2$ 촉매를 이용한 황화수소의 선택 산화반응)

  • Kim, Sang-Yun;Cho, Dal-Rae;Park, Dae-Won
    • Clean Technology
    • /
    • v.14 no.3
    • /
    • pp.204-210
    • /
    • 2008
  • A series of $V_{2}O_{5}-TiO_2$ xerogel catalysts were prepared by nonhydrolytic sol-gel method and analysed by various characterization techniques. These catalysts showed much higher surface areas and total pore volumes than conventional V$V_{2}O_{5}-TiO_2$ xerogel and impregnated $V_{2}O_{5}/TiO_2$ catalysts. It was found that the textural property of $V_{2}O_{5}-TiO_2$ material varies with the method and conditions of synthesis. Surface vanadates and $TiO_2$ anatase phase are the crucial factors to obtain high catalytic activities. The selective oxidation of hydrogen sulfide in the presence of excess water and ammonia was studied over these catalysts. Xerogel catalysts prepared by non-hydrolytic sol-gel method showed very high conversion of $H_{2}S$ without harmful emission of $SO_2$. The highest catalytic activity shown by these $V_{2}O_{5}-TiO_2$ catalysts may be due to their high surface area and good dispersion of vanadia species in the titania matrix.

  • PDF

A literature review on implant abutment and soft tissue response (임플란트 지대주와 임플란트 주위 연조직의 반응에 관한 고찰)

  • Lee, Young-Hoon;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.4
    • /
    • pp.263-273
    • /
    • 2016
  • In the implant prosthetic procedure, the soft tissue reaction was varied with the material and surface treatment of the abutment. It may be the cause of the peri-implantitis, and hence it can affect the long-term prognosis of the implant prosthesis. Titania and zirconia abutment presented superior biocompatibility and stable soft tissue reaction, while gold alloy abutment showed unfavorable reaction sometimes. A soft tissue reaction can be differed by the surface characteristics even in the same material type. Because rougher surface induces a bacterial attachment, the part contacting a soft tissue should have smooth surface. Additional surface treatment can enhance the cellular response without increasing bacterial attachment. Repeated removal and insertion of the abutment and the shape of the abutment may affect the soft tissue reaction, also. Ultrasonic cleaning and argon plasma cleaning are effective way to clean the retained micro-dust on the customized abutment.

Photo-oxidation of Aqueous Humic Acid using TiO2 Sols-Characterization of Humic Acid in the Chemical Oxidation Treatment(I)- (TiO2 졸을 이용한 수중 Humic Acid의 광산화-화학적 산화법에 의한 부식산의 분해처리 기술에 관한 연구(I)-)

  • Seok, Sang Il;Ahn, Bok Yeop;Kim, Mi Sun;Suh, Tae Soo;Rhee, Dong Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1073-1081
    • /
    • 2000
  • The photo-oxidation of an aqueous humic acid solution using $TiO_2$ sols. which is transparent in visible range, was studied. The $TiO_2$ sols were prepared by a process wherein hydrogen peroxide was added to a gel of $TiO(OH)_2$ originated from hydrolysis of $TiCl_4$, and the resulting titanium peroxo solution(TPS) was heated. The concentration of $TiO_2$ used for photo-oxidation was about 100ppm, determined by comparing the photoluminescence(PL) intensity measured as a function of $TiO_2$ concentration. $TiO_2$ sols aged at $100^{\circ}C$ for more than 12h were found to exhibit a maximum rate in photocatalytic decomposition of humic acid. and the efficiency was better than that of Degussa P25. In addition, the resulting aqueous humic acid after photocatalytic decomposition with sols had an excellent transmittance of visible light, while that treated with Degussa P25 was still turbid. caused by $TiO_2$ particles.

  • PDF