• Title/Summary/Keyword: Tissue scaffolds

Search Result 231, Processing Time 0.026 seconds

Advances in the design of macroporous polymer scaffolds for potential applications in dentistry

  • Bencherif, Sidi A.;Braschler, Thomas M.;Renaud, Philippe
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.6
    • /
    • pp.251-261
    • /
    • 2013
  • A paradigm shift is taking place in medicine and dentistry from using synthetic implants and tissue grafts to a tissue engineering approach that uses degradable porous three-dimensional (3D) material hydrogels integrated with cells and bioactive factors to regenerate tissues such as dental bone and other oral tissues. Hydrogels have been established as a biomaterial of choice for many years, as they offer diverse properties that make them ideal in regenerative medicine, including dental applications. Being highly biocompatible and similar to native extracellular matrix, hydrogels have emerged as ideal candidates in the design of 3D scaffolds for tissue regeneration and drug delivery applications. However, precise control over hydrogel properties, such as porosity, pore size, and pore interconnectivity, remains a challenge. Traditional techniques for creating conventional crosslinked polymers have demonstrated limited success in the formation of hydrogels with large pore size, thus limiting cellular infiltration, tissue ingrowth, vascularization, and matrix mineralization (in the case of bone) of tissue-engineered constructs. Emerging technologies have demonstrated the ability to control microarchitectural features in hydrogels such as the creation of large pore size, porosity, and pore interconnectivity, thus allowing the creation of engineered hydrogel scaffolds with a structure and function closely mimicking native tissues. In this review, we explore the various technologies available for the preparation of macroporous scaffolds and their potential applications.

Myocardial tissue engineering using electrospun nanofiber composites

  • Kim, Pyung-Hwan;Cho, Je-Yoel
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.26-36
    • /
    • 2016
  • Emerging trends for cardiac tissue engineering are focused on increasing the biocompatibility and tissue regeneration ability of artificial heart tissue by incorporating various cell sources and bioactive molecules. Although primary cardiomyocytes can be successfully implanted, clinical applications are restricted due to their low survival rates and poor proliferation. To develop successful cardiovascular tissue regeneration systems, new technologies must be introduced to improve myocardial regeneration. Electrospinning is a simple, versatile technique for fabricating nanofibers. Here, we discuss various biodegradable polymers (natural, synthetic, and combinatorial polymers) that can be used for fiber fabrication. We also describe a series of fiber modification methods that can increase cell survival, proliferation, and migration and provide supporting mechanical properties by mimicking micro-environment structures, such as the extracellular matrix (ECM). In addition, the applications and types of nanofiber-based scaffolds for myocardial regeneration are described. Finally, fusion research methods combined with stem cells and scaffolds to improve biocompatibility are discussed. [BMB Reports 2016; 49(1): 26-36]

Fibrous composite matrix of chitosan/PLGA for tissue regeneration

  • Shim, In-Kyong;Hwang, Jung-Hyo;Lee, Sang-Young;Cho, Hyun-Chul;Lee, Myung-Chul;Lee, Seung-Jin
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.237.3-238
    • /
    • 2003
  • Tissue engineering may be adequately defined as the science of persuading the body to regenerate or repair tissue that fail to regenerate or heal spontaneously. In the various techniques of cartilage tissue engineering, the use of 3-dimensional polymeric scaffolds implanted at a tissue defect site is usually involved. These scaffolds provided a framework for cells to attach, proliferate, and form extracellular matrix(ECM). The scaffolds may also serve as carriers for cells and/or growth factors. In the ideal case, scaffold absorb at a predefined rate so that the 3-dimensional space occupied by the initial scaffold is replaced by regenerated host tissue. (omitted)

  • PDF

Nanotechnology Biomimetic Cartilage Regenerative Scaffolds

  • Lim, Erh-Hsuin;Sardinha, Jose Paulo;Myers, Simon
    • Archives of Plastic Surgery
    • /
    • v.41 no.3
    • /
    • pp.231-240
    • /
    • 2014
  • Cartilage has a limited regenerative capacity. Faced with the clinical challenge of reconstruction of cartilage defects, the field of cartilage engineering has evolved. This article reviews current concepts and strategies in cartilage engineering with an emphasis on the application of nanotechnology in the production of biomimetic cartilage regenerative scaffolds. The structural architecture and composition of the cartilage extracellular matrix and the evolution of tissue engineering concepts and scaffold technology over the last two decades are outlined. Current advances in biomimetic techniques to produce nanoscaled fibrous scaffolds, together with innovative methods to improve scaffold biofunctionality with bioactive cues are highlighted. To date, the majority of research into cartilage regeneration has been focused on articular cartilage due to the high prevalence of large joint osteoarthritis in an increasingly aging population. Nevertheless, the principles and advances are applicable to cartilage engineering for plastic and reconstructive surgery.

Periodontal regeneration with nano-hyroxyapatite-coated silk scaffolds in dogs

  • Yang, Cheryl;Lee, Jung-Seok;Jung, Ui-Won;Seo, Young-Kwon;Park, Jung-Keug;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.6
    • /
    • pp.315-322
    • /
    • 2013
  • Purpose: In this study, we investigated the effect of silk scaffolds on one-wall periodontal intrabony defects. We conjugated nano-hydroxyapatite (nHA) onto a silk scaffold and then seeded periodontal ligament cells (PDLCs) or dental pulp cells (DPCs) onto the scaffold. Methods: Five dogs were used in this study. Bilateral 4 mm${\times}$2 mm (depth${\times}$mesiodistal width), one-wall intrabony periodontal defects were surgically created on the distal side of the mandibular second premolar and the mesial side of the mandibular fourth premolar. In each dog, four of the defects were separately and randomly assigned to the following groups: the PDLCcultured scaffold transplantation group (PDLC group), the DPC-cultured scaffold transplantation group (DPC group), the normal saline-soaked scaffold transplantation group, and the control group. The animals were euthanized following an 8-week healing interval for clinical, scanning electron microscopy (SEM), and histologic evaluations. Results: There was no sign of inflammation or other clinical signs of postoperative complications. The examination of cellseeded constructs by SEM provided visual confirmation of the favorable characteristics of nHA-coated silk scaffolds for tissue engineering. The scaffolds exhibited a firm connective porous structure in cross section, and after PDLCs and DPCs were seeded onto the scaffolds and cultured for 3 weeks, the attachment of well-spread cells and the formation of extracellular matrix (ECM) were observed. The histologic analysis revealed that a well-maintained grafted volume was present at all experimental sites for 8 weeks. Small amounts of inflammatory cells were seen within the scaffolds. The PDLC and DPC groups did not have remarkably different histologic appearances. Conclusions: These observations indicate that nHA-coated silk scaffolds can be considered to be potentially useful biomaterials for periodontal regeneration.

BONE TISSUE ENGINEERING USING PLLA/HA COMPOSITE SCAFFOLD AND BONE MARROW MESENCHYMAL STEM CELL (PLLA/HA Composite Scaffold와 골수 줄기세포를 이용한 조직공학적 골재생에 대한 연구)

  • Kim, Byeong-Yol;Jang, Hyon-Seok;Rim, Jae-Suk;Lee, Eui-Seok;Kim, Dong-Hyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.4
    • /
    • pp.323-332
    • /
    • 2008
  • Aim of the study: Scaffolds are crucial to tissue engineering/regeneration. Biodegradable polymer/ceramic composite scaffolds can overcome the limitations of conventional ceramic bone substitutes such as brittleness and difficulty in shaping. In this study, poly(L-lactide)/hydroxyapatite(PLLA/HA) composite scaffolds were fabricated for in vivo bone tissue engineering. Material & methods: In this study, PLLA/HA composite microspheres were prepared by double emulsion-solvent evaporation method, and were evaluated in vivo bone tissue engineering. Bone marrow mesenchymal stem cell from rat iliac crest was differentiated to osteoblast by adding osteogenic medium, and was mixed with PLLA/HA composite scaffold in fibrin gel and was injected immediately into rat cranial bone critical size defect(CSD:8mm in diameter). At 1. 2, 4, 8 weeks after implantation, histological analysis by H-E staining, histomorphometric analysis and radiolographic analysis were done. Results: BMP-2 loaded PLLA/HA composite scaffolds in fibrin gel delivered with osteoblasts differentiated from bone marrow mesenchymal stem cells showed rapid and much more bone regeneration in rat cranial bone defects than control group. Conclusion: This results suggest the feasibility and usefulness of this type of scaffold in bone tissue engineering.

Micro-CT - a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results

  • Cengiz, Ibrahim Fatih;Oliveira, Joaquim Miguel;Reis, Rui L.
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.279-289
    • /
    • 2018
  • Background: Cell behavior is the key to tissue regeneration. Given the fact that most of the cells used in tissue engineering are anchorage-dependent, their behavior including adhesion, growth, migration, matrix synthesis, and differentiation is related to the design of the scaffolds. Thus, characterization of the scaffolds is highly required. Micro-computed tomography (micro-CT) provides a powerful platform to analyze, visualize, and explore any portion of interest in the scaffold in a 3D fashion without cutting or destroying it with the benefit of almost no sample preparation need. Main body: This review highlights the relationship between the scaffold microstructure and cell behavior, and provides the basics of the micro-CT method. In this work, we also analyzed the original papers that were published in 2016 through a systematic search to address the need for specific improvements in the methods section of the papers including the amount of provided information from the obtained results. Conclusion: Micro-CT offers a unique microstructural analysis of biomaterials, notwithstanding the associated challenges and limitations. Future studies that will include micro-CT characterization of scaffolds should report the important details of the method, and the derived quantitative and qualitative information can be maximized.

Characteristics of chondrocytes adhesion depends on geometric of 3-dimensional scaffolds fabricated by micro-stereolithography (마이크로 광 조형 기술로 제작된 3차원 인공지지체의 구조적 형태에 따른 연골세포의 생착 특성)

  • Lee S.J.;Kim B.;Lim G.;Kim S.W.;Rhie J.W.;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.173-174
    • /
    • 2006
  • Understanding chondrocyte behavior inside complex, three-dimensional environments with controlled patterning of geometrical factors would provide significant insights into the basic biology of tissue regenerations. One of the fundamental limitations in studying such behavior has been the inability to fabricate controlled 3D structures. To overcome this problem, we have developed a three-dimensional microfabrication system. This system allows fabrication of predesigned internal architectures and pore size by stacking up the photopolymerized materials. Photopolymer SL5180 was used as the material for 3D scaffolds. The results demonstrate that controllable and reproducible inner-architecture can be fabricated. Chondrocytes harvested from human nasal septum were cultured in two kinds of 3D scaffolds to observe cell adhesion behavior. Such 3D scaffolds might provide effective key factors to study cell behavior in complex environments and could eventually lead to optimum design of scaffolds in various tissue regenerations such as cartilage, bone, etc. in a near future.

  • PDF

Polymer brush: a promising grafting approach to scaffolds for tissue engineering

  • Kim, Woonjung;Jung, Jongjin
    • BMB Reports
    • /
    • v.49 no.12
    • /
    • pp.655-661
    • /
    • 2016
  • Polymer brush is a soft material unit tethered covalently on the surface of scaffolds. It can induce functional and structural modification of a substrate's properties. Such surface coating approach has attracted special attentions in the fields of stem cell biology, tissue engineering, and regenerative medicine due to facile fabrication, usability of various polymers, extracellular matrix (ECM)-like structural features, and in vivo stability. Here, we summarized polymer brush-based grafting approaches comparing self-assembled monolayer (SAM)-based coating method, in addition to physico-chemical characterization techniques for surfaces such as wettability, stiffness/elasticity, roughness, and chemical composition that can affect cell adhesion, differentiation, and proliferation. We also reviewed recent advancements in cell biological applications of polymer brushes by focusing on stem cell differentiation and 3D supports/implants for tissue formation. Understanding cell behaviors on polymer brushes in the scale of nanometer length can contribute to systematic understandings of cellular responses at the interface of polymers and scaffolds and their simultaneous effects on cell behaviors for promising platform designs.

A review on three dimensional scaffolds for tumor engineering

  • Ceylan, Seda;Bolgen, Nimet
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.3
    • /
    • pp.141-155
    • /
    • 2016
  • Two-dimensional (2D) cell culture and in vivo cancer model systems have been used to understand cancer biology and develop drug delivery systems for cancer therapy. Although cell culture and in vivo model studies have provided critical contribution about disease mechanism, these models present important problems. 2D tissue culture models lack of three dimensional (3D) structure, while animal models are expensive, time consuming, and inadequate to reflect human tumor biology. Up to the present, scaffolds and 3D matrices have been used for many different clinical applications in regenerative medicine such as heart valves, corneal implants and artificial cartilage. While tissue engineering has focused on clinical applications in regenerative medicine, scaffolds can be used in in vitro tumor models to better understand tumor relapse and metastasis. Because 3D in vitro models can partially mimic the tumor microenvironment as follows. This review focuses on different scaffold production techniques and polymer types for tumor model applications in cancer tissue engineering and reports recent studies about in vitro 3D polymeric tumor models including breast, ewing sarcoma, pancreas, oral, prostate and brain cancers.