DOI QR코드

DOI QR Code

Micro-CT - a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results

  • Cengiz, Ibrahim Fatih (3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine) ;
  • Oliveira, Joaquim Miguel (3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine) ;
  • Reis, Rui L. (3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine)
  • Received : 2018.06.12
  • Accepted : 2018.09.03
  • Published : 2018.12.31

Abstract

Background: Cell behavior is the key to tissue regeneration. Given the fact that most of the cells used in tissue engineering are anchorage-dependent, their behavior including adhesion, growth, migration, matrix synthesis, and differentiation is related to the design of the scaffolds. Thus, characterization of the scaffolds is highly required. Micro-computed tomography (micro-CT) provides a powerful platform to analyze, visualize, and explore any portion of interest in the scaffold in a 3D fashion without cutting or destroying it with the benefit of almost no sample preparation need. Main body: This review highlights the relationship between the scaffold microstructure and cell behavior, and provides the basics of the micro-CT method. In this work, we also analyzed the original papers that were published in 2016 through a systematic search to address the need for specific improvements in the methods section of the papers including the amount of provided information from the obtained results. Conclusion: Micro-CT offers a unique microstructural analysis of biomaterials, notwithstanding the associated challenges and limitations. Future studies that will include micro-CT characterization of scaffolds should report the important details of the method, and the derived quantitative and qualitative information can be maximized.

Keywords

References

  1. Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater. 2015;14(1):23-36. https://doi.org/10.1038/nmat4089
  2. Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: State of the art. Tissue Eng Part B-Re. 2008;14(1):61-86. https://doi.org/10.1089/teb.2007.0150
  3. Baker BM, Chen CS. Deconstructing the third dimension - How 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125(13):3015-24. https://doi.org/10.1242/jcs.079509
  4. Cengiz IF, Pereira H, de Girolamo L, Cucchiarini M, Espregueira-Mendes J, Reis RL. Oliveira JM Orthopaedic regenerative tissue engineering en route to the holy grail: disequilibrium between the demand and the supply in the operating room. J Exp Orthop. 2018;5(1):14. https://doi.org/10.1186/s40634-018-0133-9
  5. Chew SY, Low WC. Scaffold-based approach to direct stem cell neural and cardiovascular differentiation: An analysis of physical and biochemical effects. J Biomed Mater Res A. 2011;97(3):355-74.
  6. Kim K, Yeatts A, Dean D, Fisher JP. Stereolithographic bone scaffold design parameters: Osteogenic differentiation and signal expression. Tissue Eng Part B-Re. 2010;16(5):523-39. https://doi.org/10.1089/ten.teb.2010.0171
  7. Yamamoto M, Rafii S, Rabbany SY. Scaffold biomaterials for nanopathophysiology. Adv Drug Del Rev. 2014;74:104-14. https://doi.org/10.1016/j.addr.2013.09.009
  8. Zhang B, Xiao Y, Hsieh A, Thavandiran N, Radisic M. Micro-and nanotechnology in cardiovascular tissue engineering. Nanotechnology. 2011;22(49):494003. https://doi.org/10.1088/0957-4484/22/49/494003
  9. Cengiz IF, Pereira H, Espregueira-Mendes J, Oliveira JM, Reis RL. Treatments of meniscus lesions of the knee: Current concepts and future perspectives. Regen Eng Transl Med. 2017;3(1):1-19. https://doi.org/10.1007/s40883-017-0023-1
  10. Landis EN. Keane DT X-ray microtomography. Mater Charact. 2010;61(12):1305-16. https://doi.org/10.1016/j.matchar.2010.09.012
  11. Ritman EL. Micro-computed tomography - Current status and developments. Annu Rev Biomed Eng. 2004;6:185-208. https://doi.org/10.1146/annurev.bioeng.6.040803.140130
  12. Cengiz IF, Pitikakis M, Cesario L, Parascandolo P, Vosilla L, Viano G, Oliveira J, Reis R. Building the basis for patient-specific meniscal scaffolds: From human knee MRI to fabrication of 3D printed scaffolds. Bioprinting. 2016;1:1-10.
  13. Cengiz IF, Oliveira JM, Reis RL. Micro-computed tomography characterization of tissue engineering scaffolds: Effects of pixel size and rotation step. J Mater Sci Mater Med. 2017;28(8):129.
  14. Ho ST, Hutmacher DW. A comparison of micro-CT with other techniques used in the characterization of scaffolds. Biomaterials. 2006;27(8):1362-76. https://doi.org/10.1016/j.biomaterials.2005.08.035
  15. Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA. Assessment of bone ingrowth into porous biomaterials using Micro-CT. Biomaterials. 2007;28(15):2491-504. https://doi.org/10.1016/j.biomaterials.2007.01.046
  16. Lienemann PS, Metzger S, Kivelio A-S, Blanc A, Papageorgiou P, Astolfo A, Pinzer BR, Cinelli P, Weber FE, Schibli R. Longitudinal in vivo evaluation of bone regeneration by combined measurement of multipinhole SPECT and micro-CT for tissue engineering. Scientific Reports. 2015;5:10238. https://doi.org/10.1038/srep10238
  17. Luu Y, Lublinsky S, Ozcivici E, Capilla E, Pessin J, Rubin C, Judex S. In vivo quantification of subcutaneous and visceral adiposity by micro-computed tomography in a small animal model. Med Eng Phys. 2009;31(1):34-41. https://doi.org/10.1016/j.medengphy.2008.03.006
  18. Paulus MJ, Gleason SS, Kennel SJ, Hunsicker PR, Johnson DK. High resolution X-ray computed tomography: An emerging tool for small animal cancer research. Neoplasia. 2000;2(1-2):62-70. https://doi.org/10.1038/sj.neo.7900069
  19. Waarsing J, Day J, Van der Linden J, Ederveen A, Spanjers C, De Clerck N, Sasov A, Verhaar J, Weinans H. Detecting and tracking local changes in the tibiae of individual rats: A novel method to analyse longitudinal in vivo micro-CT data. Bone. 2004;34(1):163-9. https://doi.org/10.1016/j.bone.2003.08.012
  20. Birkhold AI, Razi H, Weinkamer R, Duda GN, Checa S, Willie BM. Monitoring in vivo (re) modeling: A computational approach using 4D microCT data to quantify bone surface movements. Bone. 2015;75:210-21. https://doi.org/10.1016/j.bone.2015.02.027
  21. Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P. Direct threedimensional morphometric analysis of human cancellous bone: Microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res. 1999;14(7):1167-74. https://doi.org/10.1359/jbmr.1999.14.7.1167
  22. Pereira H, Caridade S, Frias A, Silva-Correia J, Pereira D, Cengiz IF, Mano J, Oliveira JM, Espregueira-Mendes J, Reis R. Biomechanical and cellular segmental characterization of human meniscus: Building the basis for Tissue Engineering therapies. Osteoarthritis Cartilage. 2014;22(9):1271-81. https://doi.org/10.1016/j.joca.2014.07.001
  23. Batiste DL, Kirkley A, Laverty S, Thain LM, Spouge AR, Holdsworth DW. Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT. Osteoarthritis Cartilage. 2004;12(12):986-96. https://doi.org/10.1016/j.joca.2004.08.010
  24. Bentley MD, Ortiz MC, Ritman EL, Romero JC. The use of microcomputed tomography to study microvasculature in small rodents. Am J Physiol Regul Integr Comp Physiol. 2002;282(5):R1267-R79. https://doi.org/10.1152/ajpregu.00560.2001
  25. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. Guidelines for assessment of bone microstructure in rodents using microcomputed tomography. J Bone Miner Res. 2010;25(7):1468-86. https://doi.org/10.1002/jbmr.141
  26. Cardeira J, Gavaia PJ, Fernandez I, Cengiz IF, Moreira-Silva J, Oliveira JM, Reis RL, Cancela ML, Laize V. Quantitative assessment of the regenerative and mineralogenic performances of the zebrafish caudal fin. Scientific Reports. 2016;6:39191. https://doi.org/10.1038/srep39191
  27. Layton MW, Goldstein SA, Goulet RW, Feldkamp LA, Kubinski DJ, Bole GG. Examination of subchondral bone architecture in experimental osteoarthritis by microscopic computed axial tomography. Arthritis Rheumatol. 1988;31(11):1400-5. https://doi.org/10.1002/art.1780311109
  28. Mizutani R, Suzuki Y. X-ray microtomography in biology. Micron. 2012;43(2):104-15. https://doi.org/10.1016/j.micron.2011.10.002
  29. Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2012;113(3):1641-66. https://doi.org/10.1021/cr200358s
  30. Pauwels E, Van Loo D, Cornillie P, Brabant L, Van Hoorebeke L. An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging. J Microsc. 2013;250(1):21-31. https://doi.org/10.1111/jmi.12013
  31. Xing R, Wilde D, McCann G, Ridwan Y, Schrauwen JT, Steen AF, Gijsen FJ, Heiden K. Contrast-enhanced micro-CT imaging in murine carotid arteries: A new protocol for computing wall shear stress. Biomed Eng Online. 2016;15(2):156. https://doi.org/10.1186/s12938-016-0270-2
  32. Young S, Kretlow JD, Nguyen C, Bashoura AG, Baggett LS, Jansen JA, Wong M, Mikos AG. Microcomputed tomography characterization of neovascularization in bone tissue engineering applications. Tissue Eng Part B-Re. 2008;14(3):295-306. https://doi.org/10.1089/ten.teb.2008.0153
  33. Yang S, Leong K-F, Du Z, Chua C-K. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7(6):679-89. https://doi.org/10.1089/107632701753337645
  34. Karande TS, Ong JL, Agrawal CM. Diffusion in musculoskeletal tissue engineering scaffolds: Design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng. 2004;32(12):1728-43. https://doi.org/10.1007/s10439-004-7825-2
  35. Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R, Quarto R. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials. 2006;27(17):3230-7. https://doi.org/10.1016/j.biomaterials.2006.01.031
  36. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474-91. https://doi.org/10.1016/j.biomaterials.2005.02.002
  37. Freyman T, Yannas I, Gibson L. Cellular materials as porous scaffolds for tissue engineering. Prog Mater Sci. 2001;46(3):273-82. https://doi.org/10.1016/S0079-6425(00)00018-9
  38. Yamamoto M, Tabata Y, Kawasaki H, Ikada Y. Promotion of fibrovascular tissue ingrowth into porous sponges by basic fibroblast growth factor. J Mater Sci Mater Med. 2000;11(4):213-8. https://doi.org/10.1023/A:1008960024262
  39. O'Brien FJ, Harley B, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials. 2005;26(4):433-41. https://doi.org/10.1016/j.biomaterials.2004.02.052
  40. Peyton SR, Kalcioglu ZI, Cohen JC, Runkle AP, Van Vliet KJ, Lauffenburger DA, Griffith LG. Marrow-derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and stiffness. Biotechnol Bioeng. 2011;108(5):1181-93. https://doi.org/10.1002/bit.23027
  41. Clegg JR, Wechsler ME, Peppas NA. Vision for functionally decorated and molecularly imprinted polymers in regenerative engineering. Regen Eng Transl Med. 2017;3(3):166-75. https://doi.org/10.1007/s40883-017-0028-9
  42. Folkman J, Moscona A. Role of cell shape in growth control. Nature. 1978;273(5661):345. https://doi.org/10.1038/273345a0
  43. Kumar G, Tison CK, Chatterjee K, Pine PS, McDaniel JH, Salit ML, Young MF, Simon CG Jr. The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Biomaterials. 2011;32(35):9188-96. https://doi.org/10.1016/j.biomaterials.2011.08.054
  44. Kumar G, Waters MS, Farooque TM, Young MF, Simon CG Jr. Freeform fabricated scaffolds with roughened struts that enhance both stem cell proliferation and differentiation by controlling cell shape. Biomaterials. 2012;33(16):4022-30. https://doi.org/10.1016/j.biomaterials.2012.02.048
  45. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6(4):483-95. https://doi.org/10.1016/S1534-5807(04)00075-9
  46. Chen S, Nakamoto T, Kawazoe N, Chen G. Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds. Biomaterials. 2015;73:23-31. https://doi.org/10.1016/j.biomaterials.2015.09.010
  47. Chen J, Paetzell E, Zhou J, Lyons L, Soboyejo W. Osteoblast-like cell ingrowth, adhesion and proliferation on porous Ti-6Al-4V with particulate and fiber scaffolds. Mater Sci Eng, C. 2010;30(5):647-56. https://doi.org/10.1016/j.msec.2010.01.005
  48. Oh SH, Park IK, Kim JM, Lee JH. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials. 2007;28(9):1664-71. https://doi.org/10.1016/j.biomaterials.2006.11.024
  49. Mygind T, Stiehler M, Baatrup A, Li H, Zou X, Flyvbjerg A, Kassem M, Bunger C. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials. 2007;28(6):1036-47. https://doi.org/10.1016/j.biomaterials.2006.10.003
  50. Zhao Y, Tan K, Zhou Y, Ye Z, Tan W-S. A combinatorial variation in surface chemistry and pore size of three-dimensional porous poly (${\varepsilon}$-caprolactone) scaffolds modulates the behaviors of mesenchymal stem cells. Mater Sci Eng, C. 2016;59:193-202. https://doi.org/10.1016/j.msec.2015.10.017
  51. Faridani A. Results, old and new, in computed tomography. In: Inverse Problems in Wave Propagation. New York: Springer; 1997. p. 167-93.
  52. Feldkamp L, Davis L. Kress J Practical cone-beam algorithm. JOSA A. 1984;1(6):612-9. https://doi.org/10.1364/JOSAA.1.000612
  53. Gordon R, Herman G. Three-dimensional reconstruction from projections: A review of algorithms. Int Rev Cytol. 1974;38:111-51.
  54. Adamzyk C, Kachel P, Hoss M, Gremse F, Modabber A, Holzle F, Tolba R, Neuss S, Lethaus B. Bone tissue engineering using polyetherketoneketone scaffolds combined with autologous mesenchymal stem cells in a sheep calvarial defect model. J Craniomaxillofac Surg. 2016;44(8):985-94. https://doi.org/10.1016/j.jcms.2016.04.012
  55. Almela T, Brook IM, Moharamzadeh K. Development of three-dimensional tissue engineered bone-oral mucosal composite models. J Mater Sci Mater Med. 2016;27(4):65. https://doi.org/10.1007/s10856-016-5676-7
  56. Altamura D, Pastore SG, Raucci MG, Siliqi D, De Pascalis F, Nacucchi M, Ambrosio L, Giannini C. Scanning small-and wide-angle X-ray scattering microscopy selectively probes ha content in gelatin/hydroxyapatite scaffolds for osteochondral defect repair. ACS Appl Mater Inter. 2016;8(13):8728-36. https://doi.org/10.1021/acsami.6b00557
  57. Amini AR, Xu TO, Chidambaram RM, Nukavarapu SP. Oxygen tensioncontrolled matrices with osteogenic and vasculogenic cells for vascularized bone regeneration in vivo. Tissue Eng Pt A. 2016;22(7-8):610-20. https://doi.org/10.1089/ten.tea.2015.0310
  58. Arabnejad S, Johnston RB, Pura JA, Singh B, Tanzer M, Pasini D. Highstrength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomater. 2016;30:345-56. https://doi.org/10.1016/j.actbio.2015.10.048
  59. Araujo-Pires AC, Mendes VC, Ferreira-Junior O, Carvalho PSP, Guan L, Davies JE. Investigation of a novel PLGA/CaP scaffold in the healing of tooth extraction sockets to alveolar bone preservation in humans. Clin Implant Dent R. 2016;18(3):559-70. https://doi.org/10.1111/cid.12326
  60. Arifvianto B, Leeflang M, Zhou J. Characterization of the porous structures of the green body and sintered biomedical titanium scaffolds with microcomputed tomography. Mater Charact. 2016;121:48-60. https://doi.org/10.1016/j.matchar.2016.09.026
  61. Barui S, Chatterjee S, Mandal S, Kumar A, Basu B. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis. Mater Sci Eng, C. 2017;70:812-23. https://doi.org/10.1016/j.msec.2016.09.040
  62. Beck A, Murphy DJ, Carey-Smith R, Wood DJ, Zheng MH. Treatment of articular cartilage defects with microfracture and autologous matrix-induced chondrogenesis leads to extensive subchondral bone cyst formation in a sheep model. Am J Sport Med. 2016;44(10):2629-43. https://doi.org/10.1177/0363546516652619
  63. Bolanos RV, Cokelaere S, McDermott JE, Benders K, Gbureck U, Plomp S, Weinans H, Groll J, van Weeren P, Malda J. The use of a cartilage decellularized matrix scaffold for the repair of osteochondral defects: The importance of long-term studies in a large animal model. Osteoarthr Cartil. 2017;25(3):413-20. https://doi.org/10.1016/j.joca.2016.08.005
  64. Carlisle PL, Guda T, Silliman DT, Lien W, Hale RG, Brown Baer PR. Investigation of a pre-clinical mandibular bone notch defect model in miniature pigs: Clinical computed tomography, micro-computed tomography, and histological evaluation. J Korean Assoc Oral Maxillofac Surg. 2016;42(1):20-30. https://doi.org/10.5125/jkaoms.2016.42.1.20
  65. Chamieh F, Collignon A-M, Coyac BR, Lesieur J, Ribes S, Sadoine J, Llorens A, Nicoletti A, Letourneur D, Colombier M-L. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells. Sci Rep. 2016;6:38814. https://doi.org/10.1038/srep38814
  66. Chandran S, Babu SS, Varma H, John A. Osteogenic efficacy of strontium hydroxyapatite micro-granules in osteoporotic rat model. J Biomater Appl. 2016;31(4):499-509. https://doi.org/10.1177/0885328216647197
  67. Chang B, Song W, Han T, Yan J, Li F, Zhao L, Kou H, Zhang Y. Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth. Acta Biomater. 2016;33:311-21. https://doi.org/10.1016/j.actbio.2016.01.022
  68. Chang Y-L, Lo Y-J, Feng S-W, Huang Y-C, Tsai H-Y, Lin C-T, Fan K-H, Huang H-M. Bone healing improvements using hyaluronic acid and hydroxyapatite/beta-tricalcium phosphate in combination: an animal study. BioMed Res Int. 2016;2016:8301624.
  69. Chen G, Yang L, Lv Y. Cell-free scaffolds with different stiffness but same microstructure promote bone regeneration in rabbit large bone defect model. J Biomed Mater Res A. 2016;104(4):833-41. https://doi.org/10.1002/jbm.a.35622
  70. Costantini M, Colosi C, Mozetic P, Jaroszewicz J, Tosato A, Rainer A, Trombetta M, Swieszkowski W, Dentini M, Barbetta A. Correlation between porous texture and cell seeding efficiency of gas foaming and microfluidic foaming scaffolds. Mater Sci Eng, C. 2016;62:668-77. https://doi.org/10.1016/j.msec.2016.02.010
  71. Crica LE, Wengenroth J, Tiainen H, Ionita M, Haugen HJ. Enhanced X-ray absorption for micro-CT analysis of low density polymers. J Biomater Sci Polym Ed. 2016;27(9):805-23. https://doi.org/10.1080/09205063.2016.1152856
  72. Cui W, Sun G, Qu Y, Xiong Y, Sun T, Ji Y, Yang L, Shao Z, Ma J, Zhang S. Repair of rat calvarial defects using Si-doped hydroxyapatite scaffolds loaded with a bone morphogenetic protein-2-related peptide. J Orth Res. 2016;34(11):1874-82. https://doi.org/10.1002/jor.23208
  73. Ding M, Henriksen SS, Theilgaard N, Overgaard S. Assessment of activated porous granules on implant fixation and early bone formation in sheep. J Orthop Transl. 2016;5:38-47.
  74. Dumont VC, Mansur AA, Carvalho SM, Borsagli FGM, Pereira MM, Mansur HS. Chitosan and carboxymethyl-chitosan capping ligands: Effects on the nucleation and growth of hydroxyapatite nanoparticles for producing biocomposite membranes. Mater Sci Eng, C. 2016;59:265-77. https://doi.org/10.1016/j.msec.2015.10.018
  75. Dumont VC, Mansur HS, Mansur AA, Carvalho SM, Capanema NS, Barrioni BR. Glycol chitosan/nanohydroxyapatite biocomposites for potential bone tissue engineering and regenerative medicine. Int J Biol Macromol. 2016;93:1465-78. https://doi.org/10.1016/j.ijbiomac.2016.04.030
  76. Erdogan O, Supachawaroj N, Soontornvipart K, Kheolamai P. Treatment of peri-implant defects in the rabbit's tibia with adipose or bone marrowderived mesenchymal stems cells. Clin Implant Dent R. 2016;18(5):1003-14. https://doi.org/10.1111/cid.12378
  77. Fang X, Xie J, Zhong L, Li J, Rong D, Li X, Ouyang J. Biomimetic gelatin methacrylamide hydrogel scaffolds for bone tissue engineering. J Mater Chem B. 2016;4(6):1070-80. https://doi.org/10.1039/C5TB02251G
  78. Fortier LA, Chapman HS, Pownder SL, Roller BL, Cross JA, Cook JL, Cole BJ. BioCartilage improves cartilage repair compared with microfracture alone in an equine model of full-thickness cartilage loss. Am J Sport Med. 2016;44(9):2366-74. https://doi.org/10.1177/0363546516648644
  79. Frohbergh ME, Guevara JM, Grelsamer RP, Barbe MF, He X, Simonaro CM, Schuchman EH. Acid ceramidase treatment enhances the outcome of autologous chondrocyte implantation in a rat osteochondral defect model. Osteoarthr Cartil. 2016;24(4):752-62. https://doi.org/10.1016/j.joca.2015.10.016
  80. Geng H, Todd NM, Devlin-Mullin A, Poologasundarampillai G, Kim TB, Madi K, Cartmell S, Mitchell CA, Jones JR, Lee PD. A correlative imaging based methodology for accurate quantitative assessment of bone formation in additive manufactured implants. J Mater Sci Mater Med. 2016;27(6):112. https://doi.org/10.1007/s10856-016-5721-6
  81. Giuliani A, Manescu A, Mohammadi S, Mazzoni S, Piattelli A, Mangano F, Iezzi G, Mangano C. Quantitative kinetics evaluation of blocks versus granules of biphasic calcium phosphate scaffolds (HA/${\beta}$-TCP 30/70) by synchrotron radiation X-ray microtomography: A human study. Implant Dent. 2016;25(1):6-15. https://doi.org/10.1097/ID.0000000000000363
  82. Gong W, Lei D, Li S, Huang P, Qi Q, Sun Y, Zhang Y, Wang Z, You Z, Ye X. Hybrid small-diameter vascular grafts: Anti-expansion effect of electrospun poly ${\varepsilon}$-caprolactone on heparin-coated decellularized matrices. Biomaterials. 2016;76:359-70. https://doi.org/10.1016/j.biomaterials.2015.10.066
  83. Goodrich LR, Chen AC, Werpy NM, Williams AA, Kisiday JD, Su AW, Cory E, Morley PS, McIlwraith CW, Sah RL. Addition of mesenchymal stem cells to autologous platelet-enhanced fibrin scaffolds in chondral defects: Does it enhance repair? J Bone Joint Surg Am. 2016;98(1):23. https://doi.org/10.2106/JBJS.O.00407
  84. Hassana OB, Guessasma S, Belhabib S, Nouri H. Explaining the difference between real part and virtual design of 3D printed porous polymer at the microstructural level. Macromol Mater Eng. 2016;301(5):566-76. https://doi.org/10.1002/mame.201500360
  85. He S, Lin KF, Sun Z, Song Y, Zhao YN, Wang Z, Bi L, Liu J. Effects of Nanohydroxyapatite/poly (dl-lactic-co-glycolic acid) Microsphere-based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content. Artif Organs. 2016;40(7):128-35. https://doi.org/10.1111/aor.12741
  86. Hirota M, Shima T, Sato I, Ozawa T, Iwai T, Ametani A, Sato M, Noishiki Y, Ogawa T, Hayakawa T. Development of a biointegrated mandibular reconstruction device consisting of bone compatible titanium fiber mesh scaffold. Biomaterials. 2016;75:223-36. https://doi.org/10.1016/j.biomaterials.2015.09.034
  87. Huang X, Li Y, Xu J, Liu K, Yu X, Cheng X, Xu D, Li Z. Restoration of murine femoral segmental defect using CTGF-overexpressing MC3T3-E1 cells. Am J Transl Res. 2016;8(3):1530.
  88. Huynh NC-N, Everts V, Nifuji A, Pavasant P, Ampornaramveth RS. Histone deacetylase inhibition enhances in-vivo bone regeneration induced by human periodontal ligament cells. Bone. 2017;95:76-84. https://doi.org/10.1016/j.bone.2016.11.017
  89. Hwang PT, Lim D-J, Fee T, Alexander GC, Tambralli A, Andukuri A, Tian L, Cui W, Berry J, Gilbert SR. A bio-inspired hybrid nanosack for graft vascularization at the omentum. Acta Biomater. 2016;41:224-34. https://doi.org/10.1016/j.actbio.2016.06.011
  90. Jang JY, Park SH, Park JH, Lee BK, Yun J-H, Lee B, Kim JH, Min BH, Kim MS. In vivo osteogenic differentiation of human dental pulp stem cells embedded in an injectable in vivo-forming hydrogel. Macromol Biosci. 2016;16(8):1158-69. https://doi.org/10.1002/mabi.201600001
  91. Jaroszewicz J, Kosowska A, Hutmacher D, Swieszkowski W, Moskalewski S. Insight into characteristic features of cartilage growth plate as a physiological template for bone formation. J Biomed Mater Res A. 2016;104(2):357-66.
  92. Jia P, Chen H, Kang H, Qi J, Zhao P, Jiang M, Guo L, Zhou Q, Qian ND, Zhou HB. Deferoxamine released from poly (lactic-co-glycolic acid) promotes healing of osteoporotic bone defect via enhanced angiogenesis and osteogenesis. J Biomed Mater Res A. 2016;104(10):2515-27. https://doi.org/10.1002/jbm.a.35793
  93. John L, Janeta M, Rajczakowska M, Ejfler J, Lydzba D, Szafert S. Synthesis and microstructural properties of the scaffold based on a 3-(trimethoxysilyl) propyl methacrylate-POSS hybrid towards potential tissue engineering applications. RSC Advances. 2016;6(70):66037-47. https://doi.org/10.1039/C6RA10364B
  94. Kerckhofs G, Chai Y, Luyten F, Geris L. Combining microCT-based characterization with empirical modelling as a robust screening approach for the design of optimized CaP-containing scaffolds for progenitor cellmediated bone formation. Acta Biomater. 2016;35:330-40. https://doi.org/10.1016/j.actbio.2016.02.037
  95. Khan PK, Mahato A, Kundu B, Nandi SK, Mukherjee P, Datta S, Sarkar S, Mukherjee J, Nath S, Balla VK. Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds. Sci Rep. 2016;6:32964. https://doi.org/10.1038/srep32964
  96. Kim HJ, Lee S, Yun H-W, Yin XY, Kim SH, Choi BH, Kim YJ, Kim MS, Min B-H. In vivo degradation profile of porcine cartilage-derived extracellular matrix powder scaffolds using a non-invasive fluorescence imaging method. J Biomater Sci Polym Ed. 2016;27(2):177-90. https://doi.org/10.1080/09205063.2015.1120262
  97. Kim J-A, Lim J, Naren R, H-s Y, Park EK. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo. Acta Biomater. 2016;44:155-67. https://doi.org/10.1016/j.actbio.2016.08.039
  98. Krueger E, Chang AN, Brown D, Eixenberger J, Brown R, Rastegar S, Yocham KM, Cantley KD, Estrada D. Graphene foam as a three-dimensional platform for myotube growth. ACS Biomater Sci Eng. 2016;2(8):1234-41. https://doi.org/10.1021/acsbiomaterials.6b00139
  99. Kumpova I, Vavrik D, Fila T, Koudelka P, Jandejsek I, Jakubek J, Kytyr D, Zlamal P, Vopalensky M, Gantar A. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector. J Instrum. 2016;11(02):C02003. https://doi.org/10.1088/1748-0221/11/02/C02003
  100. Lappalainen O-P, Karhula S, Haapea M, Kyllonen L, Haimi S, Miettinen S, Saarakkala S, Korpi J, Ylikontiola LP, Serlo WS. Bone healing in rabbit calvarial critical-sized defects filled with stem cells and growth factors combined with granular or solid scaffolds. Childs Nerv Syst. 2016;32(4):681-8. https://doi.org/10.1007/s00381-016-3017-2
  101. Lappalainen O-P, Karhula SS, Haapea M, Kauppinen S, Finnila M, Saarakkala S, Serlo W, Sandor GK. Micro-CT analysis of bone healing in rabbit calvarial critical-sized defects with solid bioactive glass, tricalcium phosphate granules or autogenous bone. J Oral Maxillofac Res. 2016;7(2):e4.
  102. Lee DY, Park SA, Lee SJ, Kim TH, Oh SH, Lee JH, Kwon SK. Segmental tracheal reconstruction by 3D-printed scaffold: Pivotal role of asymmetrically porous membrane. Laryngoscope. 2016;126(9):e304. https://doi.org/10.1002/lary.25806
  103. Lee JY, Son SJ, Son JS, Kang SS, Choi SH. Bone-healing capacity of PCL/PLGA/duck beak scaffold in critical bone defects in a rabbit model. BioMed Res Int. 2016;2016:2136215.
  104. Levingstone TJ, Thompson E, Matsiko A, Schepens A, Gleeson JP, O'Brien FJ. Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits. Acta Biomater. 2016;32:149-60. https://doi.org/10.1016/j.actbio.2015.12.034
  105. Li H, Fan J, Sun L, Liu X, Cheng P, Fan H. Functional regeneration of ligament-bone interface using a triphasic silk-based graft. Biomaterials. 2016;106:180-92. https://doi.org/10.1016/j.biomaterials.2016.08.012
  106. Li W, Kang J, Yuan Y, Xiao F, Yao H, Liu S, Lu J, Wang Y, Wang Z, Ren L. Preparation and characterization of PVA-PEEK/PVA-${\beta}$-TCP bilayered hydrogels for articular cartilage tissue repair. Compos Sci Technol. 2016;128:58-64. https://doi.org/10.1016/j.compscitech.2016.03.013
  107. Liang Y, Wen L, Shang F, Wu J, Sui K, Ding Y. Endothelial progenitors enhanced the osteogenic capacities of mesenchymal stem cells in vitro and in a rat alveolar bone defect model. Arch Oral Biol. 2016;68:123-30. https://doi.org/10.1016/j.archoralbio.2016.04.007
  108. Lin W-J, Zhang D-Y, Zhang G, Sun H-T, Qi H-P, Chen L-P, Liu Z-Q, Gao R-L, Zheng W. Design and characterization of a novel biocorrodible iron-based drug-eluting coronary scaffold. Mater Des. 2016;91:72-9. https://doi.org/10.1016/j.matdes.2015.11.045
  109. Liu X, Bao C, Xu HH, Pan J, Hu J, Wang P, Luo E. Osteoprotegerin genemodified BMSCs with hydroxyapatite scaffold for treating critical-sized mandibular defects in ovariectomized osteoporotic rats. Acta Biomater. 2016;42:378-88. https://doi.org/10.1016/j.actbio.2016.06.019
  110. Lovati A, Lopa S, Recordati C, Talo G, Turrisi C, Bottagisio M, Losa M, Scanziani E, Moretti M. In vivo bone formation within engineered hydroxyapatite scaffolds in a sheep model. Calcif Tissue Int. 2016;99(2):209-23. https://doi.org/10.1007/s00223-016-0140-8
  111. Lv X, Li Z, Chen S, Xie M, Huang J, Peng X, Yang R, Wang H, Xu Y, Feng C. Structural and functional evaluation of oxygenating keratin/silk fibroin scaffold and initial assessment of their potential for urethral tissue engineering. Biomaterials. 2016;84:99-110. https://doi.org/10.1016/j.biomaterials.2016.01.032
  112. Maiti SK, Ninu AR, Sangeetha P, Mathew DD, Tamilmahan P, Kritaniya D, Kumar N, Hescheler J. Mesenchymal stem cells-seeded bio-ceramic construct for bone regeneration in large critical-size bone defect in rabbit. J Stem Cells Regen Med. 2016;12(2):87.
  113. Majumdar S, Pothirajan P, Dorcemus D, Nukavarapu S, Kotecha M. High field sodium MRI assessment of stem cell chondrogenesis in a tissue-engineered matrix. Ann Biomed Eng. 2016;44(4):1120-7. https://doi.org/10.1007/s10439-015-1382-8
  114. Manescu A, Giuliani A, Mohammadi S, Tromba G, Mazzoni S, Diomede F, Zini N, Piattelli A, Trubiani O. Osteogenic potential of dualblocks cultured with human periodontal ligament stem cells: In vitro and synchrotron microtomography study. J Periodontal Res. 2016;51(1):112-24. https://doi.org/10.1111/jre.12289
  115. Meininger S, Mandal S, Kumar A, Groll J, Basu B, Gbureck U. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Acta Biomater. 2016;31:401-11. https://doi.org/10.1016/j.actbio.2015.11.050
  116. Namli H, Erdogan O, Gonlusen G, Kahraman OE, Aydin HM, Karabag S, Tatli U. Vertical bone augmentation using bone marrow-derived stem cells: An in vivo study in the rabbit calvaria. Implant Dent. 2016;25(1):54-62. https://doi.org/10.1097/ID.0000000000000334
  117. Nau C, Henrich D, Seebach C, Schroder K, Fitzsimmons S-J, Hankel S, Barker JH, Marzi I, Frank J. Treatment of large bone defects with a vascularized periosteal flap in combination with biodegradable scaffold seeded with bone marrow-derived mononuclear cells: An experimental study in rats. Tissue Eng Pt A. 2015;22(1-2):133-41.
  118. Neves N, Campos BB, Almeida IF, Costa PC, Cabral AT, Barbosa MA, Ribeiro CC. Strontium-rich injectable hybrid system for bone regeneration. Mater Sci Eng, C. 2016;59:818-27. https://doi.org/10.1016/j.msec.2015.10.038
  119. Novajra G, Boetti NG, Lousteau J, Fiorilli S, Milanese D, Vitale-Brovarone C. Phosphate glass fibre scaffolds: Tailoring of the properties and enhancement of the bioactivity through mesoporous glass particles. Mater Sci Eng, C. 2016;67:570-80. https://doi.org/10.1016/j.msec.2016.05.048
  120. Offeddu G, Ashworth J, Cameron R, Oyen M. Structural determinants of hydration, mechanics and fluid flow in freeze-dried collagen scaffolds. Acta Biomater. 2016;41:193-203. https://doi.org/10.1016/j.actbio.2016.05.024
  121. Olubamiji AD, Izadifar Z, Si JL, Cooper DM, Eames BF, Chen DX. Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: Influence of molecular weight and pore geometry. Biofabrication. 2016;8(2):025020. https://doi.org/10.1088/1758-5090/8/2/025020
  122. Park HJ, Min KD, Lee MC, Kim SH, Lee OJ, Ju HW, Moon BM, Lee JM, Park YR, Kim DW. Fabrication of 3D porous SF/${\beta}$-TCP hybrid scaffolds for bone tissue reconstruction. J Biomed Mater Res A. 2016;104(7):1779-87. https://doi.org/10.1002/jbm.a.35711
  123. Pilipchuk SP, Monje A, Jiao Y, Hao J, Kruger L, Flanagan CL, Hollister SJ, Giannobile WV. Integration of 3D printed and micropatterned polycaprolactone scaffolds for guidance of oriented collagenous tissue formation in vivo. Adv Healthc Mater. 2016;5(6):676-87. https://doi.org/10.1002/adhm.201500758
  124. Poudel SB, Bhattarai G, Kim J-H, Kook S-H, Seo Y-K, Jeon Y-M, Lee J-C. Local delivery of recombinant human FGF7 enhances bone formation in rat mandible defects. J Bone Miner Metab. 2017;35(5):485-96. https://doi.org/10.1007/s00774-016-0784-5
  125. Pripatnanont P, Praserttham P, Suttapreyasri S, Leepong N, Monmaturapoj N. Bone regeneration potential of biphasic nanocalcium phosphate with high hydroxyapatite/tricalcium phosphate ratios in rabbit calvarial defects. Int J Oral Maxillofac Implants. 2016;31(2):294-303.
  126. Przekora A, Palka K, Ginalska G. Biomedical potential of chitosan/HA and chitosan/${\beta}$-1, 3-glucan/HA biomaterials as scaffolds for bone regeneration - A comparative study. Mater Sci Eng, C. 2016;58:891-9. https://doi.org/10.1016/j.msec.2015.09.046
  127. Qi X, Huang Y, Han D, Zhang J, Cao J, Jin X, Huang J, Li X, Wang T. Threedimensional poly (${\varepsilon}$-caprolactone)/hydroxyapatite/collagen scaffolds incorporating bone marrow mesenchymal stem cells for the repair of bone defects. Biomed Mater. 2016;11(2):025005. https://doi.org/10.1088/1748-6041/11/2/025005
  128. Qi X, Zhang J, Yuan H, Xu Z, Li Q, Niu X, Hu B, Wang Y, Li X. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats. Int J Biol Sci. 2016;12(7):836. https://doi.org/10.7150/ijbs.14809
  129. Saito K, Anada T, Shiwaku Y, Chiba S, Miyatake N, Suzuki K, Tsuchiya K, Suzuki O. Dose-dependent enhancement of octacalcium phosphate biodegradation with a gelatin matrix during bone regeneration in a rabbit tibial defect model. RSC Advances. 2016;6(69):64165-74. https://doi.org/10.1039/C6RA07602E
  130. Schouman T, Schmitt M, Adam C, Dubois G, Rouch P. Influence of the overall stiffness of a load-bearing porous titanium implant on bone ingrowth in critical-size mandibular bone defects in sheep. J Mech Behav Biomed. 2016;59:484-96. https://doi.org/10.1016/j.jmbbm.2016.02.036
  131. Shahgholi M, Oliviero S, Baino F, Vitale-Brovarone C, Gastaldi D, Vena P. Mechanical characterization of glass-ceramic scaffolds at multiple characteristic lengths through nanoindentation. J Eur Ceram Soc. 2016;36(9):2403-9. https://doi.org/10.1016/j.jeurceramsoc.2016.01.042
  132. Sharma S, Sapkota D, Xue Y, Sun Y, Finne-Wistrand A, Bruland O, Mustafa K. Adenoviral mediated expression of BMP2 by bone marrow stromal cells cultured in 3D copolymer scaffolds enhances bone formation. PloS one. 2016;11(1):e0147507. https://doi.org/10.1371/journal.pone.0147507
  133. Sheikh FA, Ju HW, Moon BM, Lee OJ, Kim J-H, Park HJ, Kim DW, Kim D-K, Jang JE, Khang G. Hybrid scaffolds based on PLGA and silk for bone tissue engineering. Tissue Eng Regen M. 2016;10(3):209-21. https://doi.org/10.1002/term.1989
  134. Shi J, Sun J, Zhang W, Liang H, Shi Q, Li X, Chen Y, Zhuang Y, Dai J. Demineralized bone matrix scaffolds modified by CBD-SDF-$1{\alpha}$ promote bone regeneration via recruiting endogenous stem cells. ACS Appl Mater Inter. 2016;8(41):27511-22. https://doi.org/10.1021/acsami.6b08685
  135. Suliman S, Sun Y, Pedersen TO, Xue Y, Nickel J, Waag T, Finne-Wistrand A, Steinmuller-Nethl D, Krueger A, Costea DE. In vivo host response and degradation of copolymer scaffolds functionalized with nanodiamonds and bone morphogenetic protein 2. Adv Healthc Mater. 2016;5(6):730-42. https://doi.org/10.1002/adhm.201500723
  136. Sun Y, Liu S, Fu Y, Kou X-X, He D-Q, Wang G-N, Fu C-C, Liu Y, Zhou Y-H. Mineralized Collagen Regulates Macrophage Polarization During Bone Regeneration. J Biomed Nanotechnol. 2016;12(11):2029-40. https://doi.org/10.1166/jbn.2016.2296
  137. Tagliabue S, Rossi E, Baino F, Vitale-Brovarone C, Gastaldi D, Vena P. Micro-CT based finite element models for elastic properties of glass-ceramic scaffolds. J Mech Behav Biomed. 2017;65:248-55. https://doi.org/10.1016/j.jmbbm.2016.08.020
  138. Tan H, Yang S, Liu W, Dai P, Tang T, Li W. Calcium sulfate cement combined with silica-based mesoporous material for bone regeneration: in vitro and in vivo study. Int J Clin Exp Med. 2016;9(11):20907-18.
  139. Tang W, Lin D, Yu Y, Niu H, Guo H, Yuan Y, Liu C. Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Acta Biomater. 2016;32:309-23. https://doi.org/10.1016/j.actbio.2015.12.006
  140. Tansik G, Kilic E, Beter M, Demiralp B, Sendur GK, Can N, Ozkan H, Ergul E, Guler MO, Tekinay AB. A glycosaminoglycan mimetic peptide nanofiber gel as an osteoinductive scaffold. Biomater Sci. 2016;4(9):1328-39. https://doi.org/10.1039/C6BM00179C
  141. Tao Z-S, K-k T, Huang Z-L, Zhou Q, Sun T, Xu H-M, Zhou Y-L, Lv Y-X, Cui W, Yang L. Combined treatment with parathyroid hormone (1-34) and betatricalcium phosphate had an additive effect on local bone formation in a rat defect model. Med Biol Eng Comput. 2016;54(9):1353-62. https://doi.org/10.1007/s11517-015-1402-8
  142. Tu S, Hu F, Cai W, Xiao L, Zhang L, Zheng H, Jiang Q, Chen L. Visualizing polymeric bioresorbable scaffolds with three-dimensional image reconstruction using contrast-enhanced micro-computed tomography. Int J Cardiovas Imag. 2017;33(5):731-7. https://doi.org/10.1007/s10554-016-1049-z
  143. Vuornos K, Bjorninen M, Talvitie E, Paakinaho K, Kellomaki M, Huhtala H, Miettinen S, Seppanen-Kaijansinkko R, Haimi S. Human adipose stem cells differentiated on braided polylactide scaffolds is a potential approach for tendon tissue engineering. Tissue Eng Pt A. 2016;22(5-6):513-23. https://doi.org/10.1089/ten.tea.2015.0276
  144. Wang H, He X-Q, Jin T, Li Y, Fan X-Y, Wang Y, Xu Y-Q. Wnt11 plays an important role in the osteogenesis of human mesenchymal stem cells in a PHA/FN/ALG composite scaffold: possible treatment for infected bone defect. Stem Cell Res Ther. 2016;7(1):18. https://doi.org/10.1186/s13287-016-0277-4
  145. Wang X-F, Lu P-J, Song Y, Sun Y-C, Wang Y-G, Wang Y. Nano hydroxyapatite particles promote osteogenesis in a three-dimensional bio-printing construct consisting of alginate/gelatin/hASCs. RSC Advances. 2016;6(8):6832-42. https://doi.org/10.1039/C5RA21527G
  146. Xia Y, Zhou P, Wang F, Qiu C, Wang P, Zhang Y, Zhao L, Xu S. Degradability, biocompatibility, and osteogenesis of biocomposite scaffolds containing nano magnesium phosphate and wheat protein both in vitro and in vivo for bone regeneration. Int J Nanomed. 2016;11:3435. https://doi.org/10.2147/IJN.S105645
  147. Xie Q, Wang Z, Zhou H, Yu Z, Huang Y, Sun H, Bi X, Wang Y, Shi W, Gu P. The role of miR-135-modified adipose-derived mesenchymal stem cells in bone regeneration. Biomaterials. 2016;75:279-94. https://doi.org/10.1016/j.biomaterials.2015.10.042
  148. Yang L, Lu W, Pang Y, Huang X, Wang Z, Qin A, Hu Q. Fabrication of a novel chitosan scaffold with asymmetric structure for guided tissue regeneration. RSC Advances. 2016;6(75):71567-73. https://doi.org/10.1039/C6RA12370H
  149. Yi S, Yu M, Yang S, Miron RJ, Zhang Y. Tcf12, a member of basic helix-loophelix transcription factors, mediates bone marrow mesenchymal stem cell osteogenic differentiation in vitro and in vivo. Stem Cells. 2017;35(2):386-97. https://doi.org/10.1002/stem.2491
  150. Yu W, Zhao H, Ding Z, Zhang Z, Sun B, Shen J, Chen S, Zhang B, Yang K, Liu M. In vitro and in vivo evaluation of MgF2 coated AZ31 magnesium alloy porous scaffolds for bone regeneration. Colloids Surf B Biointerfaces. 2017;149:330-40. https://doi.org/10.1016/j.colsurfb.2016.10.037
  151. Yuan X, Smith RJ Jr, Guan H, Ionita CN, Khobragade P, Dziak R, Liu Z, Pang M, Wang C, Guan G. Hybrid biomaterial with conjugated growth factors and mesenchymal stem cells for ectopic bone formation. Tissue Eng Pt A. 2016;22(13-14):928-39. https://doi.org/10.1089/ten.tea.2016.0052
  152. Zhang J, Wang H, Shi J, Wang Y, Lai K, Yang X, Chen X, Yang G. Combination of simvastatin, calcium silicate/gypsum, and gelatin and bone regeneration in rabbit calvarial defects. Scientific Reports. 2016;6:23422. https://doi.org/10.1038/srep23422
  153. Zhang J, Yang Y, Chen Y, Liu X, Guo S, Zhu L, Wang Y. An in situ phototriggered-imine-crosslink composite hydrogel for bone defect repair. J Mater Chem B. 2016;4(5):973-81. https://doi.org/10.1039/C5TB02377G
  154. Zhang Y, Yang S, Zhou W, Fu H, Qian L, Miron RJ. Addition of a synthetically fabricated osteoinductive biphasic calcium phosphate bone graft to BMP2 improves new bone formation. Clin Implant Dent R. 2016;18(6):1238-47. https://doi.org/10.1111/cid.12384
  155. Zhou Q, Yu B-H, Liu W-C, Wang Z-L. BM-MSCs and Bio-Oss complexes enhanced new bone formation during maxillary sinus floor augmentation by promoting differentiation of BM-MSCs. In Vitro Cell Dev Biol Anim. 2016;52(7):757-71. https://doi.org/10.1007/s11626-015-9995-7
  156. Zidek J, Vojtova L, Abdel-Mohsen A, Chmelik J, Zikmund T, Brtnikova J, Jakubicek R, Zubal L, Jan J, Kaiser J. Accurate micro-computed tomography imaging of pore spaces in collagen-based scaffold. J Mater Sci Mater Med. 2016;27(6):110. https://doi.org/10.1007/s10856-016-5717-2
  157. Zimmerer R, Jehn P, Kokemuller H, Abedian R, Lalk M, Tavassol F, Gellrich N-C, Spalthoff S. In vivo tissue engineered bone versus autologous bone: Stability and structure. Int J Oral Maxillofac Surg. 2017;46(3):385-93. https://doi.org/10.1016/j.ijom.2016.10.012
  158. Zo SM, Singh D, Singh D, Han SS. Altering kinetics of polymerization can modulate mesenchymal stem cells interaction with 3D matrix. Sci Adv Mater. 2016;8(8):1688-95. https://doi.org/10.1166/sam.2016.2449
  159. Boone JM, Velazquez O, Cherry SR. Small-animal X-ray dose from micro-CT. Mol Imaging. 2004;3(3):15353500200404118.
  160. Figueroa SD, Winkelmann CT, Miller WH, Volkert WA, Hoffman TJ. TLD assessment of mouse dosimetry during microCT imaging. Med Phys. 2008;35(9):3866-74. https://doi.org/10.1118/1.2959847
  161. Willekens I, Buls N, Lahoutte T, Baeyens L, Vanhove C, Caveliers V, Deklerck R, Bossuyt A, de Mey J. Evaluation of the radiation dose in micro-CT with optimization of the scan protocol. Contrast Media Mol I. 2010;5(4):201-7. https://doi.org/10.1002/cmmi.394
  162. Du Plessis A, Broeckhoven C, Guelpa A, Le Roux SG. Laboratory X-ray microcomputed tomography: A user guideline for biological samples. GigaScience. 2017;6(6):1-11.
  163. Ritman EL. Current status of developments and applications of micro-CT. Annu Rev Biomed Eng. 2011;13:531-52. https://doi.org/10.1146/annurev-bioeng-071910-124717
  164. Kruth JP, Bartscher M, Carmignato S, Schmitt R, De Chiffre L, Weckenmann A. Computed tomography for dimensional metrology. CIRP Ann-Manuf Techn. 2011;60(2):821-42. https://doi.org/10.1016/j.cirp.2011.05.006
  165. Stock SR. Microcomputed tomography: Methodology and applications. Boca Raton, FL: CRC press, 9; 2008.
  166. Morris DE, Mather ML, Simon CG Jr, Crowe JA. Time-optimized X-ray micro-CT imaging of polymer based scaffolds. J Biomed Mater Res B Appl Biomater. 2012;100((2):360-7.
  167. De Chiffre L, Carmignato S, Kruth J-P, Schmitt R, Weckenmann A. Industrial applications of computed tomography. CIRP Ann-Manuf Techn. 2014;63(2):655-77. https://doi.org/10.1016/j.cirp.2014.05.011
  168. Nazarian A, Snyder BD, Zurakowski D, Muller R. Quantitative microcomputed tomography: a non-invasive method to assess equivalent bone mineral density. Bone. 2008;43(2):302-11. https://doi.org/10.1016/j.bone.2008.04.009
  169. Barrett JF, Keat N. Artifacts in CT: Recognition and avoidance. Radiographics. 2004;24(6):1679-91. https://doi.org/10.1148/rg.246045065
  170. Boas FE, Fleischmann D. CT artifacts: Causes and reduction techniques. Imaging Med. 2012;4(2):229-40. https://doi.org/10.2217/iim.12.13
  171. Sweedy A, Bohner M, van Lenthe GH, Baroud G. A novel method for segmenting and aligning the pre-and post-implantation scaffolds of resorbable calcium-phosphate bone substitutes. Acta Biomater. 2017;54:441-53. https://doi.org/10.1016/j.actbio.2017.03.001

Cited by

  1. Suturable regenerated silk fibroin scaffold reinforced with 3D-printed polycaprolactone mesh: biomechanical performance and subcutaneous implantation vol.30, pp.6, 2018, https://doi.org/10.1007/s10856-019-6265-3
  2. Meniscal allograft transplants and new scaffolding techniques vol.4, pp.6, 2018, https://doi.org/10.1302/2058-5241.4.180103
  3. Blend scaffolds with polyaspartamide/polyester structure fabricated via TIPS and their RGDC functionalization to promote osteoblast adhesion and proliferation vol.107, pp.12, 2018, https://doi.org/10.1002/jbm.a.36776
  4. Automatic three‐dimensional analysis of bone volume and quality change after maxillary sinus augmentation vol.21, pp.6, 2019, https://doi.org/10.1111/cid.12853
  5. Computational Design of Three-Dimensional Multi-Constituent Material Microstructure Sets with Prescribed Statistical Constituent and Geometric Attributes vol.2, pp.1, 2018, https://doi.org/10.1007/s42493-020-00032-7
  6. Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone and porous silk fibroin for meniscus tissue engineering vol.12, pp.2, 2018, https://doi.org/10.1088/1758-5090/ab779f
  7. Combination of electrospinning with other techniques for the fabrication of 3D polymeric and composite nanofibrous scaffolds with improved cellular interactions vol.31, pp.17, 2018, https://doi.org/10.1088/1361-6528/ab6ab4
  8. Nanobiocomposite based on natural polyelectrolytes for bone regeneration vol.108, pp.7, 2018, https://doi.org/10.1002/jbm.a.36917
  9. Facile Hydrothermal Synthesis of an Iodine-Doped Computed Tomography Contrast Agent Using Insoluble Triiodobenzene vol.6, pp.12, 2018, https://doi.org/10.1021/acsbiomaterials.0c01131
  10. Micro-computed tomography in preventive and restorative dental research: A review vol.51, pp.None, 2018, https://doi.org/10.5624/isd.20210087
  11. A Novel Modified-Curcumin Promotes Resolvin-Like Activity and Reduces Bone Loss in Diabetes-Induced Experimental Periodontitis vol.14, pp.None, 2018, https://doi.org/10.2147/jir.s330157
  12. Synthesis and Characterization of Biocompatible Methacrylated Kefiran Hydrogels: Towards Tissue Engineering Applications vol.13, pp.8, 2021, https://doi.org/10.3390/polym13081342
  13. Noninvasive In Vivo Imaging and Monitoring of 3D-Printed Polycaprolactone Scaffolds Labeled with an NIR Region II Fluorescent Dye vol.4, pp.4, 2018, https://doi.org/10.1021/acsabm.0c01587
  14. Tissue Regeneration through Cyber‐Physical Systems and Microbots vol.31, pp.31, 2021, https://doi.org/10.1002/adfm.202009663
  15. Micro-Computed Tomography Analysis on Administration of Mesenchymal Stem Cells - Bovine Teeth Scaffold Composites for Alveolar Bone Tissue Engineering vol.52, pp.None, 2018, https://doi.org/10.4028/www.scientific.net/jbbbe.52.86
  16. In situ process monitoring and automated multi-parameter evaluation using optical coherence tomography during extrusion-based bioprinting vol.47, pp.None, 2021, https://doi.org/10.1016/j.addma.2021.102251
  17. Current clinical applications and potential perspective of micro-computed tomography in cardiovascular imaging: A systematic scoping review vol.62, pp.6, 2018, https://doi.org/10.1016/j.hjc.2021.04.006
  18. Computed Tomography as a Characterization Tool for Engineered Scaffolds with Biomedical Applications vol.14, pp.22, 2021, https://doi.org/10.3390/ma14226763
  19. Characterization of Tissue Scaffolds Using Synchrotron Radiation Microcomputed Tomography Imaging vol.27, pp.11, 2018, https://doi.org/10.1089/ten.tec.2021.0155
  20. Silk Fibroin Scaffolds as Biomaterials for 3D Mesenchymal Stromal Cells Cultures vol.11, pp.23, 2018, https://doi.org/10.3390/app112311345
  21. X-ray micro computed tomography and efficient electrochemical recovery of lanthanides on porous carbon cylinder electrodes vol.231, pp.None, 2022, https://doi.org/10.1016/j.compositesb.2021.109590