• 제목/요약/키워드: Tissue microarray

검색결과 183건 처리시간 0.034초

Low molecular weight silk fibroin increases alkaline phosphatase and type I collagen expression in MG63 cells

  • Kim, Jwa-Young;Choi, Je-Yong;Jeong, Jae-Hwan;Jang, Eun-Sik;Kim, An-Sook;Kim, Seong-Gon;Kwon, Hae-Yong;Jo, You-Young;Yeo, Joo-Hong
    • BMB Reports
    • /
    • 제43권1호
    • /
    • pp.52-56
    • /
    • 2010
  • Silk fibroin, produced by the silkworm Bombyx mori, has been widely studied as a scaffold in tissue engineering. Although it has been shown to be slowly biodegradable, cellular responses to degraded silk fibroin fragments are largely unknown. In this study, silk fibroin was added to MG-63 cell cultures, and changes in gene expression in the MG-63 cells were screened by DNA microarray analysis. Genes showing a significant (2-fold) change were selected and their expression changes confirmed by quantitative RT-PCR and western blotting. DNA microarray results showed that alkaline phosphatase (ALP), collagen type-I alpha-1, fibronectin, and transforming growth factor-${\beta}1$ expressions significantly increased. The effect of degraded silk fibroin on osteoblastogenic gene expression was confirmed by observing up-regulation of ALP activity in MG-63 cells. The finding that small fragments of silk fibroin are able to increase the expression of osteoblastogenic genes suggests that controlled degradation of silk fibroin might accelerate new bone formation.

Mechanisms of 5-azacytidine-induced damage and repair process in the fetal brain

  • Ueno, Masaki
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2006년도 추계학술대회
    • /
    • pp.55-64
    • /
    • 2006
  • The fetal central nervous system (CNS) is sensitive to diverse environmental factors, such as alcohol, heavy metals, irradiation, mycotoxins, neurotransmitters, and DNA damage, because a large number of processes occur during an extended period of development. Fetal neural damage is an important issue affecting the completion of normal CNS development. As many concepts about the brain development have been recently revealed, it is necessary to compare the mechanism of developmental abnormalities induced by extrinsic factors with the normal brain development. To clarify the mechanism of fetal CNS damage, we used one experimental model in which 5-azacytidine (5AZC), a DNA damaging and demethylating agent, was injected to the dams of rodents to damage the fetal brain. 5AzC induced cell death (apoptosis)and cell cycle arrest in the fetal brain, and it lead to microencephaly in the neonatal brain. We investigated the mechanism of apoptosis and cell cycle arrest in the neural progenitor cells in detail, and demonstrated that various cell cycle regulators were changed in response to DNA damage. p53, the guardian of genome, played a main role in these processes. Further, using DNA microarray analysis, tile signal cascades of cell cycle regulation were clearly shown. Our results indicate that neural progenitor cells have the potential to repair the DNA damages via cell cyclearrest and to exclude highly affected cells through the apoptotic process. If the stimulus and subsequent DNA damage are high, brain development proceeds abnormally and results in malformation in the neonatal brain. Although the mechanisms of fetal brain injury and features of brain malformation afterbirth have been well studied, the process between those stages is largely unknown. We hypothesized that the fetal CNS has the ability to repair itself post-injuring, and investigated the repair process after 5AZC-induced damage. Wefound that the damages were repaired by 60 h after the treatment and developmental processes continued. During the repair process, amoeboid microglial cells infiltrated in the brain tissue, some of which ingested apoptotic cells. The expressions of genes categorized to glial cells, inflammation, extracellular matrix, glycolysis, and neurogenesis were upregulated in the DNA microarray analysis. We show here that the developing brain has a capacity to repair the damage induced by the extrinsic stresses, including changing the expression of numerous genes and the induction of microglia to aid the repair process.

  • PDF

Altered Gene Expression of Caspase-10, Death Receptor-3 and IGFBP-3 in Preeclamptic Placentas

  • Han, Jae Yoon;Kim, Yoon Sook;Cho, Gyeong Jae;Roh, Gu Seob;Kim, Hyun Joon;Choi, Won Jun;Paik, Won Young;Rho, Gyu Jin;Kang, Sang Soo;Choi, Wan Sung
    • Molecules and Cells
    • /
    • 제22권2호
    • /
    • pp.168-174
    • /
    • 2006
  • Enhanced apoptosis has been observed in the placentas of women with preeclampsia, but few studies have examined changes at the molecular level. This study was designed to detect genes specifically expressed in full-term preeclamptic placentas. Tissue samples were collected immediately after cesarean delivery from 11 normal and 8 preeclamptic placentas at 35-40 weeks of gestation. Total RNAs were extracted and hybridized to a cDNA microarray. Results were confirmed by reverse-transcription polymerase chain reaction (RT-PCR), Western blotting and immunohistochemistry. Hematoxylin and eosin and TUNEL staining were also performed to confirm apoptosis in preeclamptic placentas. Among 205 genes, three were up- or downregulated in preeclamptic placentas. The expression of caspase-10 and death receptor 3 (DR-3) was significantly increased, whereas insulin-like growth factor binding protein-3 (IGFBP-3) was strongly downregulated. RT-PCR analysis and Western blotting confirmed these effects. Immunohistochemical analysis showed that the DR-3, caspase-10 and IGFBP-3 proteins were localized in the syncytial membrane. Apoptosis in the trophoblast was also increased in term placentas from women with pregnancies complicated by preeclampsia. These results suggest that caspase-10, DR-3 and IGFBP-3 are involved in apoptosis in the preeclamptic placenta.

전사체 프로파일을 이용한 고려 홍삼의 항당뇨 기전 연구 (Anti-diabetic Mechannism Study of Korean Red Ginseng by Transcriptomics)

  • 원해단;신은정;정성현
    • 약학회지
    • /
    • 제52권5호
    • /
    • pp.345-354
    • /
    • 2008
  • This study was designed to investigate the anti-diabetic effect and mechanism of Korean red ginseng extract through transcriptomics in C57BL/KsJ db/db mice. The db/db mice were randomly divided into six groups: diabetic control group (DC), red ginseng extract low dose group (RGL, 100 mg/kg), red ginseng extract high dose group (RGH, 200 mg/kg), metformin group (MET, 300 mg/kg), glipizide group (GPZ, 15 mg/kg) and pioglitazone group (PIO, 30 mg/kg), and treated with drugs once per day for 10 weeks. At the end of treatment, we measured blood glucose, insulin, hemoglobin A1c (HbA1c), triglyceride (TG), adiponectin, leptin, non-esterified fatty acid (NEFA). RGL-treated group lowered the blood glucose and HbA1c levels by 19.6% and 11.4% compared to those in diabetic control group. In addition, plasma adiponectin and leptin levels in RGL-treated groups were increased by 20% and 12%, respectively, compared to those in diabetic control. Morphological analyses of liver, pancreas and epidydimal adipose tissue were done by hematoxylin-eosin staining, and pancreatic islet insulin and glucagon levels were detected by double-immunofluorescence staining. RGL-treated group revealed higher insulin contents and lower glucagon contents compared to diabetic control. To elucidate an action mechanism of Korean red ginseng, DNA microarray analyses were performed in liver and fat tissues, and western blot and RT-PCR were conducted in liver for validation. According to hierarchical clustering and principal component analysis of gene expression Korean red ginseng treated groups were close to metformin treated group. In summary, Korean red ginseng lowered the blood glucose level through protecting destruction of islet cells and shifting glucose metabolism from hepatic glucose production to glucose utilization and improving insulin sensitivity through enhancing plasma adiponectin and leptin levels.

유전알고리즘을 이용한 유전자발현 데이타상의 특징-분류기쌍 최적 앙상블 탐색 (Searching for Optimal Ensemble of Feature-classifier Pairs in Gene Expression Profile using Genetic Algorithm)

  • 박찬호;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권4호
    • /
    • pp.525-536
    • /
    • 2004
  • 유전발현 데이타는 생명체의 특정 조직에서 채취한 샘플을 microarray상에서 측정한 것으로, 유전자들의 발현 정도가 수치로 나타난 데이타이다. 일반적으로 정상조직과 이상조직에서 관련 유전자들의 발현정도는 차이를 보이기 때문에, 유전발현 데이타를 통하여 질병을 분류할 수 있다. 이러한 분류에 모든 유전자들이 관여하지는 않으므로 관련 유전자를 선별하는 작업인 특징선택이 필요하며, 선택된 유전자들을 적절히 분류하는 방법이 필요하다. 본 논문에서는 상관계수, 유사도, 정보이론 등에 기반을 둔 7가지 특징선택 방법과 대표적인 6가지 분류기에 대하여 특징-분류기 쌍의 최적 앙상블을 탐색하기 위한 유전자 알고리즘 기반 방법을 제안한다. 두 가지 암 관련 유전자 발현 데이타에 대하여 leave-one-out cross validation을 포함한 실험을 해본 결과, 림프종 데이타와 대장암 데이타 모두 단일 특징-분류기 쌍보다 훨씬 우수한 성능을 보이는 앙상블들을 발견할 수 있었다.

Novel Antihypertension Mechanism of 𝛽-Glucan by Corin and ANP-Mediated Natriuresis in Mice

  • Lee, Sun Jung;Lee, Dong Hee;Kim, Ha Won
    • Mycobiology
    • /
    • 제48권5호
    • /
    • pp.399-409
    • /
    • 2020
  • Many of the 𝛽-glucans are known to have antihypertensive activities, but, except for angiotensin-converting enzyme II inhibition, the underlying mechanisms remain unclear. Corin is an atrial natriuretic peptide (ANP)-converting enzyme. Activated corin cleaves pro-ANP to ANP, which regulates water-sodium balance and lowers blood pressure. Here, we reported a novel antihypertensive mechanism of 𝛽-glucans, involved with corin and ANP in mice. We showed that multiple oral administrations of 𝛽-glucan induced the expression of corin and ANP, and also increased natriuresis in mice. Microarray analysis showed that corin gene expression was only upregulated in mice liver by multiple, not single, oral administrations of the 𝛽-glucan fraction of Phellinus baumii (BGF). Corin was induced in liver and kidney tissues by the 𝛽-glucans from zymosan and barley, as well as by BGF. In addition to P. baumii, 𝛽-glucans from two other mushrooms, Phellinus linteus and Ganoderma lucidum, also induced corin mRNA expression in mouse liver. ELISA immunoassays showed that ANP production was increased in liver tissue by all the 𝛽-glucans tested, but not in the heart and kidney. Urinary sodium excretion was significantly increased by treatment with 𝛽-glucans in the order of BGF, zymosan, and barley, both in 1% normal and 10% high-sodium diets. In conclusion, we found that the oral administration of 𝛽-glucans could induce corin expression, ANP production, and sodium excretion in mice. Our findings will be helpful for investigations of 𝛽-glucans in corin and ANP-related fields, including blood pressure, salt-water balance, and circulation.

Effects of pre-applied orthodontic force on the regeneration of periodontal tissues in tooth replantation

  • Park, Won-Young;Kim, Min Soo;Kim, Min-Seok;Oh, Min-Hee;Lee, Su-Young;Kim, Sun-Hun;Cho, Jin-Hyoung
    • 대한치과교정학회지
    • /
    • 제49권5호
    • /
    • pp.299-309
    • /
    • 2019
  • Objective: This study aimed to investigate the effect of pre-applied orthodontic force on the regeneration of periodontal ligament (PDL) tissues and the underlying mechanisms in tooth replantation. Methods: Orthodontic force (50 cN) was applied to the left maxillary first molars of 7-week-old male Sprague-Dawley rats (n = 32); the right maxillary first molars were left untreated to serve as the control group. After 7 days, the first molars on both sides were fully luxated and were immediately replanted in their original sockets. To verify the effects of the pre-applied orthodontic force, we assessed gene expression by using microarray analysis and real-time reverse transcription polymerase chain reaction (RT-PCR), cell proliferation by using proliferating cell nuclear antigen (PCNA) immunofluorescence staining, and morphological changes by using histological analysis. Results: Application of orthodontic force for 7 days led to the proliferation of PDL tissues, as verified on microarray analysis and PCNA staining. Histological analysis after replantation revealed less root resorption, a better arrangement of PDL fibers, and earlier regeneration of periodontal tissues in the experimental group than in the control group. For the key genes involved in periodontal tissue remodeling, including CXCL2, CCL4, CCL7, MMP3, PCNA, OPG, and RUNX2, quantitative RT-PCR confirmed that messenger RNA levels were higher at 1 or 2 weeks in the experimental group. Conclusions: These results suggest that the application of orthodontic force prior to tooth replantation enhanced the proliferation and activities of PDL cells and may lead to higher success rates with fewer complications.

연부조직 육종에서 면역조직화학적 예후인자 (Immunohistochemical Prognostic Factors in Soft Tissue Sarcoma)

  • 최경운;김정일;문남훈
    • 대한골관절종양학회지
    • /
    • 제14권2호
    • /
    • pp.106-118
    • /
    • 2008
  • 목적: 세포주기의 조절곤란은 종양의 발생과 진행에 영향을 미친다. 몇가지 알려진 연부조직 육종에 대한 면역 조직화학적 예후인자 들이 있지만 상반된 연구도 있고 G1/S phase관계되는 인자에 대한 연구는 거의 없는 상태이다. 따라서 저자는 연부조직 육종의 재발 및 전이와 관계된 G1/S phase 세포조절주기 단백의 면역화학적 예후인자를 알아보고자 하였다. 대상 및 방법: 1998년 1월부터 2005년 12월까지 연부조직 육종으로 진단된 환자 중 최소한 1년이상 추시관찰이 가능하고 파라핀 블록의 보존상태가 비교적 양호한 43예의 환자를 대상으로 연구하였다. 지방육종 15예, 악성 섬유성조직구증 13예, 횡문근육종 5예, 활막육종 5예, 평활근육종 3예, 섬유육종이 2예였다. 모든 환자의 조직은 전 절제술로 제거된 조직을 대상으로 Cyclin D1, Cyclin E, CDK4, CDK, p16, p27, Rb, E2F-1, p53, Ki-67 등의 면역 조직화학적 발현을 조직 microarray 방법을 사용하여 측정하고 환자의 국소 재발 및 전이에 따른 예후를 비교 분석하였다. 결과: 국소 재발은 8예(19%)에서 일어났으며 이것은 Cyclin E(p=0.024), E2F-1(p=0.046)의 발현과 연관이 있었다. 전이는 16예(37%)에서 일어났으며 CDK4의 증가와 연관이 있었다(p=0.031). 결론: Cyclin E와 E2F-1이 연부조직 육종의 국소 재발과 관련있는 예후를 제공해주었고, CDK4가 전이를 예측할 수 있는 독립적인 예후를 제공해주었다. 따라서 조직 검사시 이들 표식자들의 적절한 사용이 환자의 예후를 예측하고 치료의 범위를 결정 짖는데 중요한 도움을 줄 수 있을 것이다.

  • PDF

Anti-diabetic effect and mechanism of Korean red ginseng extract in C57BL/KsJ db/db mice

  • ;;정성현
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2007년도 추계 학술대회
    • /
    • pp.57-58
    • /
    • 2007
  • Purpose: Ginseng is a well-known medical plant used in traditional Oriental medicine. Korean red ginseng (KRG) has been known to have potent biological activities such as radical scavenging, vasodilating, anti-tumor and anti-diabetic activities. However, the mechanism of the beneficial effects of KRG on diabetes is yet to be elucidated. The present study was designed to investigate the anti-diabetic effect and mechanism of KRG extract in C57BL/KsJ db/db mice. Methods: The db/db mice were randomly divided into six groups: diabetic control group (DC), red ginseng extract low dose group (RGL, 100 mg/kg), red ginseng extract high dose group (RGH, 200 mg/kg), metformin group (MET, 300 mg/kg), glipizide group (GPZ, 15 mg/kg) and pioglitazone group (PIO, 30 mg/kg), and treated with drugs once per day for 10 weeks. During the experiment, body weight and blood glucose levels were measured once every week. At the end of treatment, we measured Hemoglobin A1c (HbA1c), blood glucose, insulin, triglyceride (TG), adiponectin, leptin, non-esterified fatty acid (NEFA). Morphological analyses of liver, pancreas and white adipose tissue were done by histological observation through hematoxylin-eosin staining. Pancreatic islet insulin and glucagon levels were detected by double-immunofluorescence staining. To elucidate an action of mechanism of KRG, DNA microarray analyses were performed, and western blot and RT-PCR were conducted for validation. Results: Compared to the DC group mice, body weight gain of PIO treated group mice showed 15.2% increase, but the other group mice did not showed significant differences. Compared to the DC group, fasting blood glucose levels were decreased by 19.8% in RGL, 18.3% in RGH, 67.7% in MET, 52.3% in GPZ, 56.9% in PIO-treated group. With decreased plasma glucose levels, the insulin resistance index of the RGL-treated group was reduced by 27.7% compared to the DC group. Insulin resistance values for positive drugs were all markedly decreased by 80.8%, 41.1% and 68.9%, compared to that of DC group. HbA1c levels in RGL, RGH, MET, GPZ and PIO-treated groups were also decreased by 11.0%, 6.4%, 18.9%, 16.1% and 27.9% compared to that of DC group, and these figure revealed a similar trend shown in plasma glucose levels. Plasma TG and NEFA levels were decreased by 18.8% and 16.8%, respectively, and plasma adiponectin and leptin levels were increased by 20.6% and 12.1%, respectively, in the RGL-treated group compared to those in DC group. Histological analysis of the liver of mice treated with KRG revealed a significantly decreased number of lipid droplets compared to the DC group. The control mice exhibited definitive loss and degeneration of islet, whereas mice treated with KRG preserved islet architecture. Compared to the DC group mice, KRG resulted in significant reduction of adipocytes. From the pancreatic islet double-immunofluorescence staining, we observed KRG has increased insulin production, but decreased glucagon production. KRG treatment resulted in stimulation of AMP-activated protein kinase (AMPK) phosphorylation in the db/db mice liver. To elucidate mechanism of action of KRG extract, microarray analysis was conducted in the liver tissue of mice treated with KRG extract, and results suggest that red ginseng affects on hepatic expression of genes responsible for glycolysis, gluconeogenesis and fatty acid oxidation. In summary, multiple administration of KRG showed the hypoglycemic activity and improved glucose tolerance. In addition, KRG increased glucose utilization and improved insulin sensitivity through inhibition of lipogenesis and activation of fatty acid $\beta$-oxidation in the liver tissue. In view of our present data, we may suggest that KRG could provide a solid basis for the development of new anti-diabetic drug.

  • PDF

한국인 위암에서 Caspase 2 단백 발현 양상 (Expression Pattern of Caspase 2 in Korean Gastric Cancers)

  • 김창재;박직영;이종흔;조용구;이종우;송영화;김영실;박조현;남석우;이석형;유남진;박원상;이정용
    • Journal of Gastric Cancer
    • /
    • 제3권1호
    • /
    • pp.38-43
    • /
    • 2003
  • Purpose: Caspase 2, a member of the family of ICE-like proteases, is activated by the Fas pathway and induces apoptosis by triggering the caspase cascade. The purpose of this study was to determine whether the expression pattern of caspase 2 might be associated with gastric cancer development and if so, to determine to which pathologic parameter it is linked. Materials and Methods: For the construction of the gastric cancer tissue microarray, 78 paraffin-embedded tissues containing gastric cancer areas were cored 3 times and transferred to the recipient master block. The expression pattern of caspase 2 was examined on tissue microarray slides by using immunohistochemistry and was compared with pathologic parameters, including histologic type, depth of invasion, lymph node metastasis, and peritoneal dissemination. Results: Caspase 2 was expressed on superficial and foveolar epithelial cells and lymphocytes in the gastric mucosa, mainly in cytoplasm. We found loss of caspase 2 expression in 41 ($52.6\%$) of the 78 gastric cancer tissues. Statistically, histologic type and other pathologic parameters were not related with loss of caspase 2 expression Conclusion: Our findings provide enough evidence that loss of caspase 2 expression may contribute to the development of Korean gastric cancer and that it might be one of the possible escape mechanisms from apoptosis in gastric cancer.

  • PDF