Browse > Article
http://dx.doi.org/10.5483/BMBRep.2010.43.1.052

Low molecular weight silk fibroin increases alkaline phosphatase and type I collagen expression in MG63 cells  

Kim, Jwa-Young (Department of Oral and Maxillofacial Surgery, Hallym University)
Choi, Je-Yong (Department of Biochemistry & Cell Biology, Skeletal Diseases Genome Research Center, Kyungpook National University)
Jeong, Jae-Hwan (Department of Biochemistry & Cell Biology, Skeletal Diseases Genome Research Center, Kyungpook National University)
Jang, Eun-Sik (Department of Oral and Maxillofacial Surgery, Hallym University)
Kim, An-Sook (Department of Oral and Maxillofacial Surgery, Hallym University)
Kim, Seong-Gon (Department of Oral and Maxillofacial Surgery, Collage of Dentistry, Gangneung-Wonju National University)
Kwon, Hae-Yong (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA)
Jo, You-Young (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA)
Yeo, Joo-Hong (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA)
Publication Information
BMB Reports / v.43, no.1, 2010 , pp. 52-56 More about this Journal
Abstract
Silk fibroin, produced by the silkworm Bombyx mori, has been widely studied as a scaffold in tissue engineering. Although it has been shown to be slowly biodegradable, cellular responses to degraded silk fibroin fragments are largely unknown. In this study, silk fibroin was added to MG-63 cell cultures, and changes in gene expression in the MG-63 cells were screened by DNA microarray analysis. Genes showing a significant (2-fold) change were selected and their expression changes confirmed by quantitative RT-PCR and western blotting. DNA microarray results showed that alkaline phosphatase (ALP), collagen type-I alpha-1, fibronectin, and transforming growth factor-${\beta}1$ expressions significantly increased. The effect of degraded silk fibroin on osteoblastogenic gene expression was confirmed by observing up-regulation of ALP activity in MG-63 cells. The finding that small fragments of silk fibroin are able to increase the expression of osteoblastogenic genes suggests that controlled degradation of silk fibroin might accelerate new bone formation.
Keywords
Alkaline phosphatase; Bone graft material; Collagen; Silk fibroin; TGF-${\beta}1$;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 10  (Related Records In Web of Science)
Times Cited By SCOPUS : 12
연도 인용수 순위
1 Uebersax, L., Hagenmüller, H., Hofmann, S., Gruenblatt, E.,Müller, R., Vunjak-Novakovic, G., Kaplan, D. L., Merkle, H.P. and Meinel, L. (2006) Effect of scaffold design on bone morphology in vitro. Tissue Eng. 12, 3417-3429   DOI   ScienceOn
2 Aramwit, P., Kanokpanont, S., De-Eknamkul, W. and Srichana, T. (2009) Monitoring of inflammatory mediators induced by silk sericin. J. Biosci. Bioeng. 107, 556-561   DOI   ScienceOn
3 Cai, K., Yao, K., Lin, S., Yang, Z., Li, X., Xie, H., Qing, T. and Gao, L. (2002) Poly (D, L-lactic acid) surfaces modifiedby silk fibroin: effects on the culture of osteoblast in vitro. Biomaterials 23, 1153-1160   DOI   ScienceOn
4 Massicotte, F., Lajeunesse, D., Benderdour, M., Pelletier, J.P., Hilal, G. and Duval, N. (2002) Can altered production of interleukin1 $\beta$, interleukin-6, transforming growth factor-$\beta$ and prostaglandin E2 by isolated human subchondral osteoblasts identify two subgroups of osteoarthritic patients. Osteoarthritis Cartilage. 10, 491-500   DOI   ScienceOn
5 Kim, S. G., Kim, M. H., Chae, C. H., Jung, Y. K. and Choi, J. Y. (2008) Downregulation of matrix metalloproteinases in hyperplastic dental follicles results in abnormal tooth eruption. BMB Rep. 41, 322-327   DOI   PUBMED
6 Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685   DOI   PUBMED   ScienceOn
7 Li, M., Ogiso, M. and Minoura, N. (2003) Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials 24, 357-365   DOI   ScienceOn
8 Kim, I. Y., Kim, M. M. and Kim, S. J. (2005) Transforming Growth Factor-$\beta$: biology and clinical relevance. J. Biochem. Mol. Biol. 38, 1-8   DOI   PUBMED
9 Roh, D. H., Kang, S. Y., Kim, J. Y., Kwon, Y. B., Kweon,H. Y., Lee, K. G., Park, Y. H., Baek, R. M., Heo, C. Y.,Choe J. and Lee, J. H. (2006) Wound healing effect of silk fibroin/alginate-blended sponge in full thickness skin defect of rat. J. Mater. Sci. Mater. Med. 17, 547-552   DOI   ScienceOn
10 Minoura, N., Tsukada, M. and Nagura, M. (1990) Physicochemical properties of silk fibroin membrane as a biomaterial. Biomaterials 11, 430-434   DOI   ScienceOn
11 Cao, Y. and Wang, B. (2009) Biodegradation of silk biomaterials. Int. J. Mol. Sci. 10, 1514-1524   DOI   PUBMED   ScienceOn
12 Mori, H. and Tsukada, M. (2000) New silk protein: modification of silk protein by gene engineering for production of biomaterials. J. Biotechnol. 74, 95-103   PUBMED
13 Barry, E. L. and Mosher, D. F. (1989) Factor XIIIa-mediated cross-linking of fibronectin in fibroblast cell layers.Cross-linking of cellular and plasma fibronectin and of amino-terminal fibronectin fragments. J. Biol. Chem. 264, 4179-4185   PUBMED
14 Kim, H. J., Kim, U. J., Kim, H. S., Li, C., Wada, M., Leisk,G. G. and Kaplan, D. L. (2008) Bone tissue engineering with premineralized silk scaffolds. Bone 42, 1226-1234   DOI   ScienceOn
15 Kim, K. H., Jeong, L., Park, H. N., Shin, S. Y., Park, W.M., Lee, S. C., Kim, T. I., Park, Y. J., Seol, Y. J., Lee, Y. M.,Ku, Y., Rhyu, I. C., Han, S. B. and Chung, C. P. (2005)Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J. Biotechnol. 120, 327-339   DOI   ScienceOn
16 Sofia, S., McCarthy, M. B., Gronowicz, G. and Kaplan, D.L. (2001) Functionalized silk-based biomaterials for bone formation. J. Biomed. Mater. Res. 54, 139-148   DOI   ScienceOn
17 Liu, L., Liu, J., Wang, M., Min, S., Cai, Y., Zhu, L. and Yao, J. (2008) Preparation and characterization of nanohydroxyapatite/silk fibroin porous scaffolds. J. Biomater. Sci. Polym. Ed. 19, 325-338   DOI   ScienceOn
18 Cassinelli, C., Cascardo, G., Morra, M., Draqui, L., Motta, A. and Catapano, G. (2006) Physical-chemical and biological characterization of silk fibroin-coated porous membranes for medical applications. Int. J. Artif. Organs 29, 881-892   PUBMED
19 Smith, J. C., Synes, K., Hynes, R. O. and DeSimone, D.(1990) Mesoderm induction and the control of gastrulationin Xenopus laevis: the roles of fibronectin and integrins. Development 108, 229-238   PUBMED
20 Mansell, J. P., Tarlton, J. F. and Bailey, A. J. (1997)Biochemical evidence for altered subchondral bone collagen metabolism in osteoarthritis of the hip. Br. J. Rheumatol. 36, 16-19   DOI   PUBMED
21 Karageorgiou, V., Meinel, L., Hofmann, S., Malhotra, A.,Volloch, V. and Kaplan, D. (2004) Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J. Biomed. Mater. Res. A. 71, 528-537   PUBMED
22 Williams, C. M., Engler, A. J., Daniel Slone, R., Galante, L.L. and Schwarzbauer, J. E. (2008) Fibronectin expression modulates mammary epithelial cell proliferation during acinar differentiation. Cancer Res. 68, 3185-3192   DOI   ScienceOn
23 Santin, M., Motta, A., Freddi, G. and Cannas, M. (1999) In vitro evaluation of the inflammatory potential of the silk fibroin. J. Biomed. Mater. Res. 46, 382-389   DOI   ScienceOn
24 Kweon, H., Yeo, J. H., Lee, K. G., Lee, H. C., Na, H. S.,Won, Y. H. and Cho, C. S. (2008) Semi-interoenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) for wound dressing. Biomed Mater 3, 034115   DOI   ScienceOn
25 Hopwood, B., Tsykin, A., Findlay, D. M. and Fazzalari, N.L. (2007) Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodeling, WNT and transforming growth factor $\beta$/bone morphogenetic protein signaling. Arthritis Res. Ther. 9, R100   DOI   PUBMED
26 Um, I. C., Kweon, H. Y., Park, Y. H. and Hudson, S.(2001) Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. Int. J. Biol. Macromol. 29, 91-97   DOI   ScienceOn
27 Pankov, R. and Ymada, K. M. (2002) Fibronectin at a glance. J. Cell Sci. 115, 3861-3863   DOI   ScienceOn
28 Couchourel, D., Aubry, I., Delalandre, A., Lavigne, M.,Martel-Pelletier, J., Pelletier, J. P. and Lajeunesse, D. (2009)Altered mineralization of human osteoarthritic osteoblasts is attributable to abnormal type I collagen production. Arthritis Rheum. 60, 1438-1450   DOI   ScienceOn
29 Lu, Q., Zhang, S., Hu, K., Feng, Q., Cao, C. and Cui, F.(2007) Cytocompatibility and blood compatibility of multifunctional fibroin/collagen/heparin scaffolds. Biomaterials 28, 2306-2313   DOI   ScienceOn