• 제목/요약/키워드: Tissue engineering applications

검색결과 210건 처리시간 0.028초

해양무척추동물을 활용한 골 조직 재생용 바이오 메디컬 소재 (Biomedical Materials for Regenerating Bone Tissue Utilizing Marine Invertebrate)

  • 오건우;정원교
    • 한국수산과학회지
    • /
    • 제48권1호
    • /
    • pp.1-15
    • /
    • 2015
  • Tissue engineering is an emerging, innovative technology to improve or replace the biological functions of damaged tissues and organs. Scaffolds are important materials for tissue engineering as they support cell attachment, migration, and differentiation. Marine sponges naturally contain scaffolds formed by extracellular matrix proteins (collagen and sponging) and strengthened by a siliceous or calcium carbonate skeleton. Coral skeletons are also derived naturally formed by essential calcium carbonate in the form of aragonite, and are similar to human bone. In addition, collagen extracted from jellyfish is a biosafe alternative to bovine and porcine collagen and gained attention as a potential source for tissue engineering. Moreover, cuttlefish bone is an excellent calcium source and can be used to generate bio-synthetic calcium phosphate. It has become a natural candidate for biomimetic scaffolds. This review describes the use of natural products derived from marine invertebrates for applications in bone tissue engineering based on studies from 2008 to 2014.

조직공학용 세포담체 제작을 위한 플라즈마-표면개질이 포함된 바이오프린팅 시스템 (A 3D bioprinting system and plasma-surface modification to fabricate tissue engineering scaffolds)

  • 김근형
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.3-23
    • /
    • 2017
  • The achievement of tissue engineering can be highly depending on the capability to generate complicated, cell seeded three dimensional (3D) micro/nano-structures. So, various fabrication techniques that can be used to precisely design the architecture and topography of scaffolding materials will signify a key aspect of multi-functional tissue engineering. Previous methods for obtaining scaffolds based on top-down are often not satisfactory to produce complex micro/nano-structures due to the lack of control on scaffold architecture, porosity, and cellular interactions. However, a bioprinting method can be used to design sophisticated 3D tissue scaffolds that can be engineered to mimic the tissue architecture using computer aided approach. Also, in recent, the method has been modified and optimized to fabricate scaffolds using various natural biopolymers (collagen, alginate, and chitosan etc.). Variation of the topological structure and polymer concentration allowed tailoring the physical and biological properties of the scaffolds. In this presentation, the 3D bioprinting supplemented with a newly designed plasma treatment for attaining highly bioactive and functional scaffolds for tissue engineering applications will be introduced. Moreover, various in vivo and in vitro results will show that the fabricated scaffolds can carry out their structural and biological functionality.

  • PDF

Biomimetic Electrospun Fibers for Tissue Engineering Applications

  • 신흥수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.2.2-2.2
    • /
    • 2011
  • The central strategy in tissue engineering involves a biomaterial scaffold as a delivery carrier of cells and a depot to deliver bioactive molecules. The ability of scaffolds to control cellular response to direct particular repair and regeneration processes is essential to obtain functional tissue engineering constructs. Therefore, many efforts have been made to understand local interactions of cells with their extracellular matrix (ECM) microenvironment and exploit these interactions for designing an ideal scaffold mimicking the chemical, physiological, and structural features of native ECM. ECM is composed of a number of biomacromolecules including proteins, glycosaminoglycans, and proteoglycans, which are assembled together to form complex 3-dimensional network. Electrospinning is a process to generate highly porous 3-dimensional fibrous structure with nano to micro scaled-diameter, which can closely mimic the structure of ECM. In this presentation, our approaches to develop biomimetic electrospun fibers for modulation of cell function will be discussed.

  • PDF

Polymer brush: a promising grafting approach to scaffolds for tissue engineering

  • Kim, Woonjung;Jung, Jongjin
    • BMB Reports
    • /
    • 제49권12호
    • /
    • pp.655-661
    • /
    • 2016
  • Polymer brush is a soft material unit tethered covalently on the surface of scaffolds. It can induce functional and structural modification of a substrate's properties. Such surface coating approach has attracted special attentions in the fields of stem cell biology, tissue engineering, and regenerative medicine due to facile fabrication, usability of various polymers, extracellular matrix (ECM)-like structural features, and in vivo stability. Here, we summarized polymer brush-based grafting approaches comparing self-assembled monolayer (SAM)-based coating method, in addition to physico-chemical characterization techniques for surfaces such as wettability, stiffness/elasticity, roughness, and chemical composition that can affect cell adhesion, differentiation, and proliferation. We also reviewed recent advancements in cell biological applications of polymer brushes by focusing on stem cell differentiation and 3D supports/implants for tissue formation. Understanding cell behaviors on polymer brushes in the scale of nanometer length can contribute to systematic understandings of cellular responses at the interface of polymers and scaffolds and their simultaneous effects on cell behaviors for promising platform designs.

Biomedical Application of Silk Sericin: Recent Research Trend

  • Seong-Gon Kim;Je-Yong Choi;HaeYong Kweon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제48권1호
    • /
    • pp.1-12
    • /
    • 2024
  • Silk sericin, a natural protein from silkworm cocoons, is emerging as a multifunctional biomaterial in biomedicine, particularly in tissue engineering and wound healing. Recent studies have highlighted its biocompatibility, biodegradability, and potential for chemical modification, which allows it to be incorporated into various scaffold architectures. This review article synthesizes current research, including the development of sericin-based hydrogel scaffolds for tissue engineering and sericin's role in enhancing wound healing. Key findings demonstrate sericin's ability to refine scaffold porosity and mechanical strength, expedite tissue healing, and reduce bacterial load in wounds. The integration of sericin into novel bioactive dressings and its use in peripheral nerve injury repair are also discussed, showcasing its adaptability and efficacy. The convergence of these studies illustrates the broad applications of sericin, from scaffold design to clinical interventions, making it a promising material in regenerative medicine and tissue engineering, with the potential to improve patient outcomes significantly.

임상가를 위한 특집 2 - 티타늄 임플란트 표면처리에서의 나노테크놀로지 (Nanotechnology in the Surface Treatment of Titanium Implant.)

  • 오승한
    • 대한치과의사협회지
    • /
    • 제48권2호
    • /
    • pp.106-112
    • /
    • 2010
  • 아직까지 나노관련 기술이 티타늄 임플란트에 직접적으로 사용되는 부분이 상당히 미약하다. 하지만, 수직으로 정렬된 구조를 가지는 티타니아 나노튜브는 생체 내 대부분의 임플란트 재료로 사용되는 티타늄의 차세대 개발에 있어서 가장 중요한 영향을 미칠 것이다. 본문에 설명되어 있는 내용들 뿐 만이라, 티타니아 나노튜브는 파골세포의 골 흡수성 방지, 줄기세포의 특정 성체세포로의 분화, 연골세포의 재분화, 간세포를 이용한 생물 반응기(bio-reactor) 개발 등 생체재료의 여러 분야에서 많이 연구되고 있다. 특히, 줄기세포에 관한 연구는 차세대 임플란트 개발에 있어서 가장 중요한 연구 분야 중의 하나로서, 골을 형성하는 조골세포와 골을 파괴하는 피골세포 모두 줄기세포 로부터 만들어진다는 것을 유념해야 할 것이다. 만약, 티타니아 나노튜브의 독특한 나노구조를 이용하여 줄기세포의 조골세포로의 직접 분회를 제어하는 기술이 개발되어 상업화된다면, 이 기술을 기반으로 하여 현 재까지 개발된 모든 표면 증착 및 코팅 기술을 새롭게 이용하는 차세대 티타늄 임플란트의 개발을 위한 초석이 되리라고 본다.

Non-Invasive in vivo Loss Tangent Imaging: Thermal Sensitivity Estimation at the Larmor Frequency

  • Choi, Narae;Kim, Min-Oh;Shin, Jaewook;Lee, Joonsung;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • 제20권1호
    • /
    • pp.36-43
    • /
    • 2016
  • Visualization of the tissue loss tangent property can provide distinct contrast and offer new information related to tissue electrical properties. A method for non-invasive imaging of the electrical loss tangent of tissue using magnetic resonance imaging (MRI) was demonstrated, and the effect of loss tangent was observed through simulations assuming a hyperthermia procedure. For measurement of tissue loss tangent, radiofrequency field maps ($B_1{^+}$ complex map) were acquired using a double-angle actual flip angle imaging MRI sequence. The conductivity and permittivity were estimated from the complex valued $B_1{^+}$ map using Helmholtz equations. Phantom and ex-vivo experiments were then performed. Electromagnetic simulations of hyperthermia were carried out for observation of temperature elevation with respect to loss tangent. Non-invasive imaging of tissue loss tangent via complex valued $B_1{^+}$ mapping using MRI was successfully conducted. Simulation results indicated that loss tangent is a dominant factor in temperature elevation in the high frequency range during hyperthermia. Knowledge of the tissue loss tangent value can be a useful marker for thermotherapy applications.

Novel Surface Modifications for Medical Applications

  • 박기동
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.78-78
    • /
    • 2016
  • For the past three decades, extensive research has been performed in the surface design of new polymers for a variety of medical applications. Great progress in therapeutics and diagnostics can be attributed to these scientific advances in biomedical polymers. A variety of bioinert materials or bioactive materials using drugs, cells, and growth factors are widely utilized for the implants, devices and tissue regeneration. These materials provide an improved biocompatible materials to host, to significantly decrease or increase the host/tissue/blood response to the foreign materials. In the future, biomaterials will play a different role in modern therapeutics. New materials will be tailored to interact more on a protein and cellular level to achieve high degree of biocompatibility, biospecificity and bioacitivity. In this presentation, various biocompatible materials based on surface/bulk engineering will be demonstrated, which can be utilized as therapeutics implants and therapeutic vehicles for biologically active molecules such as cell, protein /peptide and gene.

  • PDF

생체조직내 레이저 광 밀도 향상을 위한 압력 인가형 저출력 레이저 프로브 (A Pressure Applied Low-Level Laser Probe to Enhance Laser Photon Density in Soft Tissue)

  • 여창민;박정환;손태윤;이용흠;정병조
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권1호
    • /
    • pp.18-22
    • /
    • 2009
  • Laser has been widely used in various fields of medicine. Recently, noninvasive low-level laser therapeutic medical devices have been introduced in market. However, low-level laser cannot deliver enough photon density to expect positive therapeutic results in deep tissue layer due to the light scattering property in tissue. In order to overcome the limitation, this study was aimed to develop a negative pressure applied low-level laser probe to optimize laser transmission pattern and therefore, to improve photon density in soft tissue. In order to evaluate the possibility of clinical application of the developed laser probe, ex-vivo experiments were performed with porcine skin samples and laser transmissions were quantitatively measured as a function of tissue compression. The laser probe has an air suction hole to apply negative pressure to skin, a transparent plastic body to observe variations of tissue, and a small metallic optical fiber guide to support the optical fiber when negative pressure was applied. By applying negative pressure to the laser probe, the porcine skin under the metallic optical fiber guide is compressed down and, at the same time, low-level laser is emitted into the skin. Finally, the diffusion images of laser in the sample were acquired by a CCD camera and analyzed. Compared to the peak intensity without the compression, the peak intensity of laser increased about $2{\sim}2.5$ times and FWHM decreased about $1.67{\sim}2.85$ times. In addition, the laser peak intensity was positively and linearly increased as a function of compression. In conclusion, we verified that the developed low-level laser probe can control the photon density in tissue by applying compression, and therefore, its potential for clinical applications.