• Title/Summary/Keyword: Tissue damage

Search Result 1,181, Processing Time 0.037 seconds

Effects of Cadmium and Arsenic on Physiological Responses and Copper and Zinc Homeostasis of Rice

  • Jung, Ha-il;Chae, Mi-Jin;Kim, Sun-Joong;Kong, Myung-Suk;Kang, Seong-Soo;Lee, Deog-Bae;Ju, Ho-Jong;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.397-403
    • /
    • 2015
  • Heavy metals reduce the photosynthetic efficiency and disrupt metabolic reactions in a concentration-dependent manner. Moreover, by replacing the metal ions in metalloproteins that use essential metal ions, such as Cu, Zn, Mn, and Fe, as co-factors, heavy metals ultimately lead to the formation of reactive oxygen species (ROS). These, in turn, cause destruction of the cell membrane through lipid peroxidation, and eventually cause the plant to necrosis. Given the aforementioned factors, this study was aimed to understand the physiological responses of rice to cadmium (Cd) and arsenic (As) toxicity and the effect of essential metal ions on homeostasis. In order to confirm the level of physiological inhibition caused by heavy metal toxicity, hydroponically grown rice (Oryza sativa L. cv. Dongjin) plants were exposed with $0-50{\mu}M$ cadmium (Cd, $CdCl_2$) and arsenic (As, $NaAsO_2$) at 3-leaf stage, and then investigated malondialdehyde (MDA) contents after 7 days of the treatment. With increasing concentrations of Cd and As, the MDA content in leaf blade and root increased with a consistent trend. At 14 days after treatment with $30{\mu}M$ Cd and As, plant height showed no significant difference between Cd and As, with an identical reduction. However, As caused a greater decline than Cd for shoot fresh weight, dry weight, and water content. The largest amounts of Cd and As were found in the roots and also observed a large amount of transport to the leaf sheath. Interestingly, in terms of Cd transfer to the shoot parts of the plant, it was only transported to upper leaf blades, and we did not detect any Cd in lower leaf blades. However, As was transferred to a greater level in lower leaf blades than in upper leaf blades. In the roots, Cd inhibited Zn absorption, while As inhibited Cu uptake. Furthermore, in the leaf sheath, while Cd and As treatments caused no change in Cu homeostasis, they had an antagonist effect on the absorption of Zn. Finally, in both upper and lower leaf blades, Cd and As toxicity was found to inhibit absorption of both Cu and Zn. Based on these results, it would be considered that heavy metal toxicity causes an increase in lipid peroxidation. This, in turn, leads to damage to the conductive tissue connecting the roots, leaf sheath, and leaf blades, which results in a reduction in water content and causes several physiological alterations. Furthermore, by disrupting homeostasis of the essential metal ions, Cu and Zn, this causes complete heavy metal toxicity.

A Study on the Protective Effect of Antioxidants on Damage Induced by Liver Ischemia/Repefusion in a Rat Model (모델 랫드에 간 허혈/재관류로 유발된 손상에 대한 항산화제의 보호 효과에 관한 연구)

  • Ahn, Yong Ho;Seok, Pu Reum;Oh, Su Jin;Choi, Jin Woo;Shin, Jae-Ho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.3
    • /
    • pp.370-378
    • /
    • 2019
  • The hepatic ischemic model has recently been widely used for the epidemiological study of ischemic reperfusion injury. This study was carried out to investigate the protective effect of vanillin, which is known to have antioxidant and anti-inflammatory effects, against hepatic and renal injury using an ischemia-reperfusion rat model, and we also investigated the mechanism related to vanillins' protective effect. The test material was administered at a concentration of 100 mg/kg for 3 days, followed by ligation of the liver for 60 minutes to induce ischemia reperfusion. As control groups, there was a negative control, sham control and ischemia-reperfusion-only ischemia reperfusion control, and the controls groups were compared with the drug administration group. In the vanillin group, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were significantly inhibited compared with the AST and ALT activities of the ischemia-reperfusion group, and histopathological examination showed significant reduction of both inflammation and necrosis. The malondialdehyde (MDA) and superoxide dismutase (SOD) levels were significantly different from the ischemia-reperfusion group. In conclusion, vanillin showed a hepatocyte protective action by alleviating the cellular inflammation and cell necrosis caused by hepatic ischemia-reperfusion, and vanillin mitigated inflammatory changes in the kidney glomeruli and distal tubules. The protective effect is considered to be caused by vanillin's antioxidant function. Further studies such as on cell death and possibly vanillin's same effect on damaged tissue will be necessary for clinical applications such as organ transplantation.

Extracorporeal Life Support in Acute Poisoning (급성 중독에서 체외순환보조장치의 적용)

  • Lee, Si Jin;Han, Gap Su;Lee, Eui Jung;Kim, Do Hyun;Park, Kyoung Yae;Lee, Ji Young;Kim, Su Jin;Lee, Sung Woo
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.16 no.2
    • /
    • pp.86-92
    • /
    • 2018
  • Purpose: Cardiovascular or respiratory complications of acute intoxication are the most common causes of mortality. Advanced cardiac life support (ACLS) or specific antidotes help manage these cardiac or respiratory complications in acute intoxication. On the other hand, some cases do not respond to ACLS or antidotes and they require some special treatment, such as extracorporeal life support (ECLS). ECLS will provide the chance of recovery from acute intoxication. This study examined the optimal timing of ECLS in acute intoxication cases. Methods: This paper is a brief report of a case series about ECLS in acute poisoning. The cases of ECLS were reviewed and the effects of ECLS on the blood pressure and serum lactate level of the patients were analyzed. Results: A total of four cases were reviewed; three of them were antihypertensive agent-induced shock, and one was respiratory failure after the inhalation of acid. The time range of ECLS application was 4.8-23.5 hours after toxic exposure. The causes of ECLS implementation were one for recurrent cardiac arrest, two for shock that did not respond to ACLS, and one for respiratory failure that did not respond to mechanical ventilator support. Three patients showed an improvement in blood pressure and serum lactate level and were discharged alive. In case 1, ECLS was stared at 23.5 hours post toxic exposure; the patient died due to refractory shock and multiple organ failure. Conclusion: The specific management of ECLS should be considered when a patient with acute intoxication does not recovery from shock or respiratory failure despite ACLS, antidote therapies, or mechanical ventilator support. ECLS improved the hemodynamic and ventilator condition in complicated poisoned patients. The early application of ECLS may improve the tissue perfusion state and outcomes of these patients before the toxic damage becomes irreversible.

Immunostimulatory effects of enzymatic porcine placental hydrolyzate against cyclophosphamide-induced immunosuppressed model (돈태반 효소 가수분해물의 cyclophosphamide에 의한 면역 저하 동물 모델에 미치는 면역 증진 효과)

  • Kim, Keun Nam;Kim, Min Ju;Yoon, Sun Myung;Kwon, Min Joo;Shin, Dong Yeop;Lee, Hak Yong;Park, Young Mi
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.2
    • /
    • pp.155-162
    • /
    • 2022
  • This study investigated the immunostimulatory effect of enzymatic porcine placental hydrolyzate (EPPH) in cyclophosphamide (Cy)-treated rats. This effect of EPPH prevented Cy-induced decreases in body, spleen, and thymus weights and natural killer (NK) cell activity. The numbers of immune cells, such as white blood cells, granulocytes, and lymphocytes, and mid-range absolute counts were significantly higher compared to the control group. The levels of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-2, IL-12, and immunoglobulin G (IgG) were notably reduced by Cy, while EPPH prevented these effects. Histopathological analysis of spleen samples revealed the protective effect of EPPH against Cy-induced immunosuppression. The findings demonstrate that EPPH can alleviate immunosuppression by cell viability, tissue damage, and regulation of the levels of cytokines. EPPH may have value as a component of immunostimulatory agents or an ingredient in functional foods.

Experimental Study of Fire Characteristics by Isocyanate Functional Parameter (이소시아네이트 관능기 매개인자에 의한 화재 특성의 실험적 연구)

  • Lee, Jae-Geol;Han, Kyoung-Ho;Jo, Hyung-Won;Yoon, Do-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.27-37
    • /
    • 2022
  • With the recent increase in the spread of ESS (Electric Storage System), the damage to human life and property is also rapidly increasing due to continuous fires caused by ESS. In the manufacture of urethane sandwich panels used in ESS, it is necessary to improve the flame retardant performance. In this study, in order to realize the flame retardant properties of flexible polyurethane foam, the effect of the tissue density of the product due to the change of the isocyanate functional group parameter that changes the physical properties of the product on the fire performance was studied. The product was manufactured by changing the density of the urethane structure, and combustion performance tests, gas toxicity tests, and smoke density tests were performed. As a result, it was confirmed that the total amount of heat released had excellent performance when the isocyanate functional group was high, and had no correlation with the maximum heat release rate. When the value of the isocyanate functional group was 2.7 or more, the collapse of the shape could be prevented. In the gas hazard test, the performance was increased when the isocyanate functional group was relatively high, so a flame retardant for the Char system, which had a dense structure and easy to form a carbonized film, was added. confirmed to be. Therefore, as a result of this study, it is thought that it will be possible to lay the foundation for the development of a flame retardant to replace the cheap urethane sandwich panel used in the past.

Fe3O4 magnetic nanoparticles provide a novel alternative strategy for Staphylococcus aureus bone infection

  • Youliang, Ren;Jin, Yang;Jinghui, Zhang;Xiao, Yang;Lei, Shi;Dajing, Guo;Yuanyi, Zheng;Haitao, Ran;Zhongliang, Deng;Lei, Chu
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.575-585
    • /
    • 2022
  • Due to its biofilm formation and colonization of the osteocyte-lacuno canalicular network (OLCN), Staphylococcus aureus (S.aureus) implant-associated bone infection (SIABI) is difficult to cure thoroughly, and may occur recurrently subsequently after a long period dormant. It is essential to explore an alternative therapeutic strategy that can eradicate the pathogens in the infected foci. To address this, the polymethylmethacrylate (PMMA) bone cement and Fe3O4 nanoparticles compound cylinder were developed as implants based on their size and mechanical properties for the alternative magnetic field (AMF) induced thermal ablation, The PMMA mixed with optimized 2% Fe3O4 nanoparticles showed an excellent antibacterial efficacy in vitro. It was evaluated by the CFU, CT scan and histopathological staining on a rabbit 1-stage transtibial screw model. The results showed that on week 7, the CFU of infected soft tissue and implants, and the white blood cells (WBCs) of the PMMA+2% Fe3O4+AMF group decreased significantly from their controls (p<0.05). PMMA+2% Fe3O4+AMF group did not observe bone resorption, periosteal reaction, and infectious reactive bone formation by CT images. Further histopathological H&E and Gram Staining confirmed there was no obvious inflammatory cell infiltration, neither pathogens residue nor noticeably burn damage around the infected screw channel in the PMMA+2% Fe3O4+AMF group. Further investigation of nanoparticle distributions in bone marrow medullary and vital organs of heart, liver, spleen, lung, and kidney. There were no significantly extra Fe3O4 nanoparticles were observed in the medullary cavity and all vital organs either. In the current study, PMMA+2% Fe3O4+AMF shows promising therapeutic potential for SIABI by providing excellent mechanical support, and promising efficacy of eradicating the residual pathogenic bacteria in bone infected lesions.

Quality Control and Image Quality Comparison according to Ultrasonic Equipment (초음파 장비에 따른 정도관리와 화질 비교)

  • Dong-Hee, Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.935-942
    • /
    • 2022
  • In doing interventional treatment under the guidance of ultrasonography, the medical team detects the legion site with ultrasonic equipment at first, and insert angio needle. In this situation, if the position of legion and the depth of inserted needle on the ultrasonographic screen are different from real position and depth, the needle is likely to damage a major blood vessel or tissue. Accordingly, we had wondered how much such differences between screen image and reality, and so decided to examine them. Using five ultrasonographic equipments manufactured from different companies in different years, this study tried to compare the lengths of the needle on the screen images and real lengths of it, and find out the factors affecting skewness of them. This study used hog meat chunk to mimic human flesh, and sausages as the target of needle. It compared penetrating depths of the needle as the images on the five equipments using single sample t test in the SPSS 22 statistical program. It was found that all the errors were statistically significant(<.05). So, this study decided that it was wrong to evaluate performances of the equipments by the makers and ages of them. It is necessary to do periodic quality controls of equipments and improve the skillfulness of sonographers to reduce error rates between real treatment areas and the images of them.

Healing Effect of Cordyceps Militaris Extract Complex on Collagen II-Induced Arthritis Rats (콜라겐 유도 관절염 동물 모델에 대한 동충하초 복합추출물의 치료 효과)

  • Oh, Seung-Joon;Lee, Eun-Jung
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.32 no.3
    • /
    • pp.1-11
    • /
    • 2022
  • Objectives This study was designed to evaluate the healing effect of Cordyceps Militaris (CM) on collagen II-induced arthritis rats. Methods Sprague-Dawley rats were randomly divided into 6 groups (normal, control, positive control, CM with low/medium/high dosage each). Type II collagen mixed with complete Freund's adjuvant (with 1:1 v/v) was injected subcutaneously, and the mixture was injected in a same manner one week after the first injection to boost arthritis. Arthritis index, paw thickness and von Frey test were conducted to observe physical changes. hematoxylin and eosin (H&E) staining was performed to observe knee cartilage. The levels of messenger RNA (mRNA) expressions of interleukin (IL)-1𝛽, IL-6, tumor necrosis factor-alpha (TNF-𝛼) in spleen were assessed by real-time polymerase chain reaction. Results Rheumatoid arthritis is an autoimmune disease that occurs on multiple joints and can lead to temporary shape change of bones or organ failure in severe cases. Here, we aimed to determine the effect of CM extract on rheumatoid arthritis by measuring paw thickness, arthritis index, conducting von Frey test and H&E staining, and evaluating the level of IL-1𝛽, IL-6, TNF-𝛼. As a result, paw thickness, arthritis index significantly decreased in low concentration group, hind leg became less sensitive in all expermental groups. Also, histological analysis showed that the damage of knee cartilage was prevented in all experimental groups. The level of mRNA of IL-1𝛽, IL-6, and TNF-𝛼 in spleen was analyzed to decide the effectiveness of CM extract. IL-1𝛽 did not show significant change, but IL-6 and TNF-𝛼 showed significant decrease in at least one of the experimental groups. Conclusions CM showed protective effect on knee tissue destruction and improved the physical conditions of the leg involving arthritis. Also, it showed that CM has anti-inflammatory effect on specific cytokines inducing rheumatoid arthritis. In conclusion, this study demonstrated that the therapeutic potential of CM for the treatment rheumatoid arthritis, and set the foundation for the further studies.

Ginsenoside Rh2 reduces depression in offspring of mice with maternal toxoplasma infection during pregnancy by inhibiting microglial activation via the HMGB1/TLR4/NF-κB signaling pathway

  • Xu, Xiang;Lu, Yu-Nan;Cheng, Jia-Hui;Lan, Hui-Wen;Lu, Jing-Mei;Jin, Guang-Nan;Xu, Guang-Hua;Jin, Cheng-Hua;Ma, Juan;Piao, Hu-Nan;Jin, Xuejun;Piao, Lian-Xun
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.62-70
    • /
    • 2022
  • Background: Maternal Toxoplasma gondii (T. gondii) infection during pregnancy has been associated with various mental illnesses in the offspring. Ginsenoside Rh2 (GRh2) is a major bioactive compound obtained from ginseng that has an anti-T. gondii effect and attenuates microglial activation through toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway. GRh2 also alleviated tumor-associated or lipopolysaccharide-induced depression. However, the effects and potential mechanisms of GRh2 on depression-like behavior in mouse offspring caused by maternal T. gondii infection during pregnancy have not been investigated. Methods: We examined GRh2 effects on the depression-like behavior in mouse offspring, caused by maternal T. gondii infection during pregnancy, by measuring depression-like behaviors and assaying parameters at the neuronal and molecular level. Results: We showed that GRh2 significantly improved behavioral measures: sucrose consumption, forced swim time and tail suspended immobility time of their offspring. These corresponded with increased tissue concentrations of 5-hydroxytryptamine and dopamine, and attenuated indoleamine 2,3-dioxygenase or enhanced tyrosine hydroxylase expression in the prefrontal cortex. GRh2 ameliorated neuronal damage in the prefrontal cortex. Molecular docking results revealed that GRh2 binds strongly to both TLR4 and high mobility group box 1 (HMGB1). Conclusion: This study demonstrated that GRh2 ameliorated the depression-like behavior in mouse offspring of maternal T. gondii infection during pregnancy by attenuating the excessive activation of microglia and neuroinflammation through the HMGB1/TLR4/NF-κB signaling pathway. It suggests that GRh2 could be considered a potential therapy in preventing and treating psychiatric disorders in the offspring mice of mothers with prenatal exposure to T. gondii infection.

A Bivalent Inactivated Vaccine Prevents Enterovirus 71 and Coxsackievirus A16 Infections in the Mongolian Gerbil

  • Eun-Je Yi;Young-In Kim;Seung-Yeon Kim;Sung Hyun Ahn;Hyoung Jin Lee;Bohyun Suh;Jaelim Yu;Jeehye Park;Yoon Jung Lee;Eunju Jung;Sun-Young Chang
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.350-358
    • /
    • 2023
  • Hand-foot-and-mouth disease (HFMD) is a viral infectious disease that occurs in children under 5 years of age. Its main causes are coxsackievirus (CV) and enterovirus (EV). Since there are no efficient therapeutics for HFMD, vaccines are effective in preventing the disease. To develop broad coverage against CV and EV, the development of a bivalent vaccine form is needed. The Mongolian gerbil is an efficient and suitable animal model of EV71 C4a and CVA16 infection used to investigate vaccine efficacy following direct immunization. In this study, Mongolian gerbils were immunized with a bivalent inactivated EV71 C4a and inactivated CVA16 vaccine to test their effectiveness against viral infection. Bivalent vaccine immunization resulted in increased Ag-specific IgG antibody production; specifically, EV71 C4a-specific IgG was increased with medium and high doses and CVA16-specific IgG was increased with all doses of immunization. When gene expression of T cell-biased cytokines was analysed, Th1, Th2, and Th17 responses were found to be highly activated in the high-dose immunization group. Moreover, bivalent vaccine immunization mitigated paralytic signs and increased the survival rate following lethal viral challenges. When the viral RNA content was determined from various organs, all three doses of bivalent vaccine immunization were found to significantly decrease viral amplification. Upon histologic examination, EV71 C4a and CVA16 induced tissue damage to the heart and muscle. However, bivalent vaccine immunization alleviated this in a dose-dependent manner. These results suggest that the bivalent inactivated EV71 C4a/CVA16 vaccine could be a safe and effective candidate HFMD vaccine.