• Title/Summary/Keyword: Tissue Phantom

Search Result 320, Processing Time 0.029 seconds

Evaluation of using Gantry Tilt Scan to Head & Neck of Patients during Radiation Therapy for Reduction of Metal Artifact (Head & Neck 환자의 방사선 치료시 Metal Artifact의 감소를 위한 Gantry Tilt Scan의 유용성 평가)

  • Lee, Chung-Hwan;Yun, In-Ha;Hong, Dong-Gi;Back, Geum-Mun;Kwon, Gyeong-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.85-95
    • /
    • 2010
  • Purpose: The degradation of an image quality and error of the beam dose calculation can be caused because the metal artifact is generated during the CT simulation of head and neck patient. The usability of the gantry tilt scan for reducing the metal artifact tries to be appraised. Materials and Methods: The inferior $20^{\circ}$ gantry tilt scan was made in order to reduce the metal artifact and $0^{\circ}$ reconstruction image was acquired. The AAPM CT performance Phantom was used in order to compare the CT number of the reconstructed image and Original image. the difference of volume was compared by using the acrylic phantom. The homogeneity of the CT number was evaluated the Intensity volume Histogram (IVH) as in order to evaluate an influence by the metal artifact. A dose was evaluated as the Dose Volume Histogram (DVH). Results: in the comparison of the CT number and volume, the difference showed up less than 0.5%. As to the comparison of IVH, in the gantry tilt scan, influence by an artifact was reduced and the homogeneity of the CT number was improved. The comparison of DVH result reduced the mean dose error of the both sides parotid 0.2~6%. Conclusion: In the Head & Neck radiation therapy, It is difficult and to distinguish tumor and normal tissue and the error of dose is generated by the metal artifact. The delineation of the exact organization was possible if the Gantry tilt scan was used. The CT number homogeneity was improved and the error of dose could be reduced. The Gantry tilt scan confirmed in the Head & Neck radiation therapy to be very useful in the exact radiation therapy.

  • PDF

Prediction of Midline Dose from Entrance and Exit Dose Using OSLD Measurements for Total Body Irradiation

  • Choi, Chang Heon;Park, Jong Min;Park, So-Yeon;Chun, Minsoo;Han, Ji Hye;Cho, Jin Dong;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.77-82
    • /
    • 2017
  • Background: This study aims to predict the midline dose based on the entrance and exit doses from optically stimulated luminescence detector (OSLD) measurements for total body irradiation (TBI). Materials and Methods: For TBI treatment, beam data sets were measured for 6 MV and 15 MV beams. To evaluate the tissue lateral effect of various thicknesses, the midline dose and peak dose were measured using a solid water phantom (SWP) and ion chamber. The entrance and exit doses were measured using OSLDs. OSLDs were attached onto the central beam axis at the entrance and exit surfaces of the phantom. The predicted midline dose was evaluated as the sum of the entrance and exit doses by OSLD measurement. The ratio of the entrance dose to the exit dose was evaluated at various thicknesses. Results and Discussion: The ratio of the peak dose to the midline dose was 1.12 for a 30 cm thick SWP at both energies. When the patient thickness is greater than 30 cm, the 15 MV should be used to ensure dose homogeneity. The ratio of the entrance dose to the exit dose was less than 1.0 for thicknesses of less than 30 cm and 40 cm at 6 MV and 15 MV, respectively. Therefore, the predicted midline dose can be underestimated for thinner body. At 15 MV, the ratios were approximately 1.06 for a thickness of 50 cm. In cases where adult patients are treated with the 15 MV photon beam, it is possible for the predicted midline dose to be overestimated for parts of the body with a thickness of 50 cm or greater. Conclusion: The predicted midline dose and OSLD-measured midline dose depend on the phantom thickness. For in-vivo dosimetry of TBI, the measurement dose should be corrected in order to accurately predict the midline dose.

Study on the Change of Absorbed Dose and Image Quality according to X-ray Condition of Detector in Digital Radiography(DR) (Digital Radiography(DR)에서 검출기의 X선 조건에 따른 흡수선량 및 영상화질 변화에 관한 연구)

  • Hwang, Jun-Ho;Jeong, Jae-Ho;Kim, Hyun-Soo;Lee, Kyung-Bae
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.9
    • /
    • pp.99-106
    • /
    • 2017
  • This study focused on the issue that when a diagnostic detector is found to have a defect, a patient would be exposed to radiation and image quality would be degraded. Though dose analysis, an experiment was conducted to evaluate detector performance as Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR). Absorbed dose, SNR and CNR were measured using a dosimeter and a tissue equivalent phantom. The experiment was conducted to compare whether the dose value shown after being attached to the back side of the phantom matches the dose value attached behind the detector, where in the conditions of skull, chest and abdomen were set at 75 kVp, 25 mAs, 110 kVp, 8 mAs, and 80 kVp, 20 mAs, respectively. As a result, there was a difference in that the dose values attached to the back side of the detector were 0.004 mGy, 0.006 mGy, 0.003 mGy, whereas those of the back side of the phantom were 0.006 mGy, 0.016 mGy, 0.017 mGy. In order to match both values, the condition was increased and SNR and CNR also increased from 88.32, 88.10, 4.09, 1.63, 87.94, 79.97 to 93.87, 93.75, 4.91, 4.03, 92.02, 84.92. Though this study, we found that when a detector is found to have a aging, it shortens the life of equipment and increases the dose of a patient, also the improvement effect of image quality is inadequate.

Blood Vessel Strain Imaging Using Linear Array Transducer (선형 트랜스듀서를 이용한 혈관 변형률 영상법)

  • Ahn, Dong-Ki;Jeong, Mok-Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.880-890
    • /
    • 2010
  • The intrasvascular ultrasound (IVUS) imaging technique is used to diagnose cerebrovascular diseases such as stroke. Recently, elasticity imaging methods have been investigated to diagnose blood clots attached to blood vessel intima. However, the IVUS imaging technique is an invasive method that requires a transducer to be inserted into blood vessel. In this paper, strain images are obtained of blood clots attached to blood vessel intima with data acquired from outside the blood vessel using a linear array transducer. In order to measure the displacement of blood vessel accurately, experimental data are acquired by steering ultrasound beams so that they can intersect the blood vessel wall at right angles. The acquired rf data are demodulated to the baseband. The resulting complex baseband signals are then processed by an autocorrelation algorithm to compute the blood vessel movement and thereby produce strain image. This proposed method is verified by experiments on a plastic blood vessel mimicking phantom. The efficacy of the proposed method was verified using a home-made blood vessel mimicking phantom. The blood vessel mimicking phantom was constructed by making a 6 mm diameter hollow cylinder inside it to simulate a blood vessel and adhering 2 mm thick soft plaque to the inner wall of the hollow cylinder. The RF data were acquired using a clinical ultrasound scanner (Accuvix XQ, Medison, Seoul. Korea) with a 7.5 MHz linear array transducer by steering ultrasound beams in steps of $1^{\circ}$ from $-40^{\circ}$ to $40^{\circ}$ for a total of 81 angles. Experimental results show that the plaque region near the blood vessel wall is softer than background tissue. Although the imaging region is restricted due to the limited range of angles for which scan lines are perpendicular to the wall, the feasibility of strain imaging is demonstrated.

Effects on Patient Exposure Dose and Image Quality by Increasing Focal Film Distance in Abdominal Radiography (복부 일반촬영시 초점-필름간거리 변화가 피폭선량 및 화질에 미치는 영향)

  • Kim, You-Hyun;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.21 no.1
    • /
    • pp.52-58
    • /
    • 1998
  • We can and must improve the diagnostic images using available knowledge and technology. At the same time we must strive to reduce the patient's integral and entrance radiation dose. Reducing the integral dose to the patient during the radiologic procedure is a primary concern of the patient, especially the pediatric patient, the radiologist and the technologist. A 100cm focal film distance generally is used for most over-table radiography. The early x-ray tubes and screen film combinations required long exposures, which often resulted in motion artifacts. But nowaday, we have the generators and x-ray tubes that can deliver the energy necessary in a very short time and the receptors that can record the information just as rapidly. And, we performed this studies to evaluate the patient exposure dose and the image quality by increasing focal film distance in diagnostic radiography. There are many factors which affected to exposure factor, but we studied to verify of FFD increase, only. Effect of increasing the focal film distance to a 140 cm distance was tested as follows; 1. The focal film distances were set at 100, 120, and 140cm. 2. A 18cm acryl(tissue equivalent) phantom was placed on the table top. 3. An Capintec 192 electrometer with PM 05 ion chamber was placed at the entrance surface of the phantom, and exposure were made at each focal film distances. 4. The procedure was repeated in the same manner as above except the ion chamber was placed beneath the phantom at the film plane. 5. Exit exposure were normalize to 8mR for each portions of the experiment. Based on the success of the empirical measurements, a detailed mathematical analysis of the dose reduction was performed using the percent depth dose data. The results of this study can be summerized as followings ; 1) Increasing FFD from 100 cm to 140 cm, we would create a situation that would have a significant effect on the overall quality of radiograph and achive the 17.42% reduction of entrance dose and the 18.95% reduction of integral dose that the patient receives. 2) Thickness of Al step wedge for equal film density increased with the long distance. 3) Increasing FFD, Magnification of image was lowered. 4) Resolution of image also increased with the FFD. As the results described above, we strongly recommend using the long FFD to provide better information for our patients and profession in abdomen radiographic studies.

  • PDF

A Study on the Probability of Secondary Carcinogenesis during Gamma Knife Radiosurgery (감마나이프 방사선 수술시 2차 발암 확률에 관한 연구)

  • Joo-Ah, Lee;Gi-Hong, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.843-849
    • /
    • 2022
  • In this study, the probability of secondary carcinogenesis was analyzed by measuring the exposure dose of surrounding normal organs during radiosurgery using a gamma knife. A pediatric phantom (Model 706-G, CIRS, USA) composed of human tissue-equivalent material was set to four tumor volumes of 0.25 cm3, 0.51 cm3, 1.01 cm3, and 2.03 cm3, and the average dose was 18.4 ± 3.4 Gy. After installing the Rando phantom on the table of the gamma knife surgical equipment, the OSLD nanoDot dosimeters were placed in the right eye, left eye, thyroid, thymus gland, right lung, and left lung to measure each exposure dose. The probability of cancer occurrence due to radiation exposure of surrounding normal organs during gamma knife radiosurgery for acoustic schwannoma disease was 4.08 cancers per 100,000 at a tumor volume of 2.03 cm3. This study is expected to be used as useful data in relation to stochastic effects in the future by studying the risk of secondary radiation exposure that can occur during stereotactic radiosurgery.

Evaluation of electron dose distribution obtained from ADAC Pinnacle system against measurement and Monte Carlo method for breast patients

  • Lee, S.;Lee, R.;Park, D.;S. Suh
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.82-82
    • /
    • 2003
  • Introduction: With the development of dose calculation algorithms for electron beams, 3D RTP systerns are available for electron beam dose distribution commercially. However, no studies evaluated the accuracy of dose calculation with ADAC Pinnacle system for electron beams. So, the accuracy of the ADAC system is investigated by comparing electron dose distributions from ADAC system against the BEAMnrc/DOSXYZnrc. Methods: A total of 33 breast cancer patients treated with 6, 9, and 12MeV electrons in our institution was selected for this study. The first part of this study is to compare the dose distributions of measurement, TPS and the BEAMnrc/DOSXYZnrc code in flat water phantom at gantry zero position and for a 10 ${\times}$ 10 $\textrm{cm}^2$ field. The second part is to evaluate the monitor unit obtained from measurement and TPS. Adding actual breast patient's irregular blocks to the first part, monitor units to deliver 100 cGy to the dose maximum (dmax) were calculated from measurement and 3D RTP system. In addition, the dose distributions using blocks were compared between TPS and the BEAMnrc/DOSXYZnrc code. Finally, the effects of tissue inhomogeneities were studied by comparing dose distributions from Pinnacle and Monte Carlo method on CT data sets. Results: The dose distributions calculated using water phantom by the TPS and the BEAMnrc/ DOSXYZnrc code agreed well with measured data within 2% of the maximum dose. The maximum differences of monitor unit between measured and Pinnacle TPS in flat water phantom at gantry zero position were 4% for 6 MeV and 2% for 9 and 12 MeV electrons. In real-patient cases, comparison of depth doses and lateral dose profiles calculated by the Pinnacle TPS, with BEAMnrc/DOSXYZnrc code has generally shown good agreement with relative difference less than +/-3%. Discussion: For comparisons of real-patient cases, the maximum differences between the TPS and BEAMnrc/DOSXYZnrc on CT data were 10%. These discrepancies were due in part to the inaccurate dose calculation of the TPS, so that it needs to be improved properly. Conclusions: On the basis of the results presented in this study, we can conclude that the ADAC Pinnacle system for electron beams is capable of giving results absolutely comparable to those of a Monte Carlo calculation.

  • PDF

Implementation of Man-made Tongue Immobilization Devices in Treating Head and Neck Cancer Patients (두 경부 암 환자의 방사선치료 시 자체 제작한 고정 기구 유용성의 고찰)

  • Baek, Jong-Geal;Kim, Joo-Ho;Lee, Sang-Kyu;Lee, Won-Joo;Yoon, Jong-Won;Cho, Jeong-Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Purpose: For head and neck cancer patients treated with radiation therapy, proper immobilization of intra-oral structures is crucial in reproducing treatment positions and optimizing dose distribution. We produced a man-made tongue immobilization device for each patient subjected to this study. Reproducibility of treatment positions and dose distributions at air-and-tissue interface were compared using man-made tongue immobilization devices and conventional tongue-bites. Materials and Methods: Dental alginate and putty were used in producing man-made tongue immobilization devices. In order to evaluate reproducibility of treatment positions, all patients were CT-simulated, and linac-gram was repeated 5 times with each patient in the treatment position. An acrylic phantom was devised in order to evaluate safety of man-made tongue immobilization devices. Air, water, alginate and putty were placed in the phantom and dose distributions at air-and-tissue interface were calculated using Pinnacle (version 7.6c, Phillips, USA) and measured with EBT film. Two different field sizes (3$\times$3 cm and 5$\times$5 cm) were used for comparison. Results: Evaluation of linac grams showed reproducibility of a treatment position was 4 times more accurate with man-made tongue immobilization devices compared with conventional tongue bites. Patients felt more comfortable using customized tongue immobilization devices during radiation treatment. Air-and-tissue interface dose distributions calculated using Pinnacle were 7.78% and 0.56% for 3$\times$3 cm field and 5$\times$5 cm field respectively. Dose distributions measured with EBT (international specialty products, USA) film were 36.5% and 11.8% for 3$\times$3 cm field and 5$\times$5 cm field respectively. Values from EBT film were higher. Conclusion: Using man-made tongue immobilization devices made of dental alginate and putty in treatment of head and neck cancer patients showed higher reproducibility of treatment position compared with using conventional mouth pieces. Man-made immobilization devices can help optimizing air-and-tissue interface dose distributions and compensating limited accuracy of radiotherapy planning systems in calculating air-tissue interface dose distributions.

  • PDF

Optimization Study of Digital X-ray Imaging with Dual Energy Subtraction Method (듀얼 에너지 감산기법을 이용한 디지털 X-ray 영상 최적화에 관한 연구)

  • Kim, Dae Ho;Lee, Yong-Gu;Lee, Youngjin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.138-142
    • /
    • 2016
  • Dual-energy digital radiography (DEDR) has been used for detecting lesions within the body using energy subtraction methods. The purpose of this study was to acquire optimal bone and tissue image by changing physical factors such as Tube voltage (kVp) and add filters, and then we compared with the predicted values using SRS-78 program and experimental results. For that purpose, we acquired images according to changes in physical parameters of various materials since we had to acquire the optimal bone and tissue image using energy subtraction. Used phantom consists of aluminum and polymethyl methacrylate (PMMA) and a comparison of image optimization was measured by contrast-to-noise ratio (CNR). In results, first of all, we confirmed that a subtraction image from 50 kVp image and 120 kVp image is optimal bone and tissue image. Also when we added a 10 mm Aluminum add filter, we expected it is a result of the optimal bone and tissue image. Besides, we confirmed these results are consistent with the predicted optimized condition by SRS-78 program.. In conclusion, we indicated that we can acquire optimal bone and tissue image by controling physical factors such as kVp, add filters through this study. Also we expected that DEDR will contribute to the field of medical imaging technology.

Dose Distribution of Co-60 Photon Beam in Total Body Irradiation (Co-60에 의한 전신조사시 선량분포)

  • Kang, Wee-Saing
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.109-120
    • /
    • 1991
  • Total body irradiation is operated to irradicate malignant cells of bone marrow of patients to be treated with bone marrow transplantation. Field size of a linear accelerator or cobalt teletherapy unit with normal geometry for routine technique is too small to cover whole body of a patient. So, any special method to cover patient whole body must be developed. Because such environments as room conditions and machine design are not universal, some characteristic method of TBI for each hospital could be developed. At Seoul National University Hospital, at present, only a cobalt unit is available for TBI because source head of the unit could be tilted. When the head is tilted outward by 90$^{\circ}$, beam direction is horizontal and perpendicular to opposite wall. Then, the distance from cobalt source to the wall was 319 cm. Provided that the distance from the wall to midsagittal plane of a patient is 40cm, nominal field size at the plane(SCD 279cm) is 122cm$\times$122cm but field size by measurement of exposure profile was 130cm$\times$129cm and vertical profile was not symmetric. That field size is large enough to cover total body of a patient when he rests on a couch in a squatting posture. Assuming that average lateral width of patients is 30cm, percent depth dose for SSD 264cm and nominal field size 115.5cm$\times$115.5cm was measured with a plane-parallel chamber in a polystyrene phantom and was linear over depth range 10~20cm. An anthropomorphic phantom of size 25cm wide and 30cm deep. Depth of dose maximum, surface dose and depth of 50% dose were 0.3cm, 82% and 16.9cm, respectively. A dose profile on beam axis for two opposing beams was uniform within 10% for mid-depth dose. Tissue phantom ratio with reference depth 15cm for maximum field size at SCD 279cm was measured in a small polystyrene phantom and was linear over depth range 10~20cm. An anthropomorphic phantom with TLD chips inserted in holes on the largest coronal plane was bilaterally irradiated by 15 minute in each direction by cobalt beam aixs in line with the cross line of the coronal plane and contact surface of sections No. 27 and 28. When doses were normalized with dose at mid-depth on beam axis, doses in head/neck, abdomen and lower lung region were close to reference dose within $\pm$ 10% but doses in upper lung, shoulder and pelvis region were lower than 10% from reference dose. Particulaly, doses in shoulder region were lower than 30%. On this result, the conclusion such that under a geometric condition for TBI with cobalt beam as SNUH radiotherapy departement, compensators for head/neck and lung shielding are not required but boost irradiation to shoulder is required could be induced.

  • PDF