• Title/Summary/Keyword: Tire Pressure

Search Result 191, Processing Time 0.028 seconds

Development of an Active Tire Pressure Control System Using a Tire Simulator (타이어 시뮬레이터를 이용한 능동형 타이어 공기압 제어 시스템 개발)

  • Lee, Kyu-Cheol;Ryu, Kwan-Hee;Rhee, Joong-Yong;Hong, Ji-Hyang;Kim, Hyeok-Joo;Yu, Ji-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.35 no.1
    • /
    • pp.21-30
    • /
    • 2010
  • This study was performed to develop an active tire pressure control system that can adjust tire pressure to the optimum level according to traveling and working condition of agricultural tractor. For the development of active tire pressure control system, pneumatic supplier, solenoid valve block including pneumatic supply line, infinite rotation type pneumatic supplier with rotary joint unit, tire pressure transceiver module and control algorithm were developed. Also, tire simulator was developed. Using this tire simulator, the feasibility of each part constructing actual system was tested by checking the performance. The average communication success ratio was 98.3% between tire pressure transmitter and receiver module according to the various tire rotational speed and data receipt position of receiver module. The communication performance of the developed transmitter and receiver module was very stable in any condition. The tire pressure control system was accomplished by using the proportional control algorithm in this study. Also tire pressure control performance of developed control system was analyzed by using the tire simulator. As a result of control performance analysis to the developed system, the developed control system took 307 seconds to inflate agricultural tractor's tire from 50 kPa to 180 kPa. In opposite case, it took 210 seconds. Also it was able to control the tire pressure accurately under ${\pm}0.9%$ (FS) in any condition.

An Experimental Study of Tire Safety & Economical Efficiency with Respect to Inflation Pressure (공기압에 따른 타이어의 안전성 및 경제성에 관한 실험적 연구)

  • Hong, Seung-Jun;Lee, Ho-Guen
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • Many vehicles have significantly under-inflated tires, primarily because drivers infrequently check their vehicles' tire pressure. When a tire is used while significantly under-inflated, its sidewalls flex more and the tire temperature increases, increasing stress and the risk of failure. In this study we evaluated tire safety and economical efficiency at various inflation pressure. For tire safety we performed FMVSS indoor durability test, measurement of rolling tire temperature, braking performance at dry/wet road condition, and rolling resistance test for economical efficiency. Results show that low pressure decreases tire durability of both speed-increase condition and load-increase condition. Heat temperature of rolling tire increases as pressure decreases and significantly under-inflated tires cause increase of vehicle's stopping distance at wet road condition. Also Under-inflation increases the rolling resistance of a tire and, correspondingly, decreases vehicle's fuel economy.

Rolling Characteristics of Towed Wheel with Tire Inflation Pressure on Off-Road (Off-road에서 타이어공기압에 따른 피구동륜의 구름 특성)

  • Park W. Y.;Lee H. J.;Hong J. H.;Chang Y. C.;Lee S. S.;Lee K. S.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.69-74
    • /
    • 2005
  • This study was carried out to investigate experimentally the effect of the ground condition and tire inflation pressure on rolling characteristics of towed wheel, including the deformation, sinkage, effective rolling radius and motion resistance of tire. The experiment was performed at soil bin for the three levels of off-road conditions(ground-I, ground-II and ground-III) and a on-road condition(ground-IV), and for the four levels of tire inflation pressure which were 80 kPa, 160 kPa, 240 kPa and 320 kPa. The results of this study are summarized as follows: 1. As the tire inflation pressure of towed wheel increased, the tire deformation decreased exponentially, but the tire sinkage increased exponentially. This trend was getting bigger as ground condition was getting softer. 2. The increase of tire inflation pressure increased the effective rolling radius of towed wheel, and this kind of trend occurred greatly as ground condition was soft. As a result, the effective rolling radius for the off-road condition was always larger than that for on-road condition. 3. For the on-road condition, as the tire inflation pressure of towed wheel increased, the motion resistance decreased, but for the off-road condition, augmentation of tire inflation pressure increased the motion resistance. Also, the effect of inflation pressure on motion resistance appeared great as ground condition was soft. Therefore, in order to improve the tire performance by the control of inflation pressure, it is desirable to reduce the tire inflation pressure for off-road condition and to increase the tire inflation pressure for on-road condition.

A Study on Soil Stress and Contact Pressure of Tire (타이어 접지압과 토양속 응력분포에 관한 연구)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.245-252
    • /
    • 2001
  • This study was carried out to investigate the effect of three factors(dynamic load, inflation pressure and multiple passes of the tire) on the contact pressure and the soil stresses under the tire. A series of soil bin experiment was conducted with a 6.00R14 radial-ply tire for sandy loam soil. Tire contact pressure at soil surface and soil stresses at 10cm and 20cm soil depth were measured for the three levels of dynamic load(1.17kN, 2.35kN and 3.53kN), for the three levels of tire inflation pressure(103.42kPa, 206.84kPa and 413.69kPa), and for five different number of passes(1, 2, 3, 4 and 5 pass). The following results were drawn from this study 1) As dynamic load, inflation pressure and number of passes of the tire increased, tire contact pressure at soil surface and soil stresses at 10cm and 20cm soil depth increased accordingly. Thus increased in dynamic load, inflation pressure and number of passes of the tire would increase soil compaction. 2) The effect of three different factors, or dynamic load, inflation pressure and number of passes of the tire, decreased as the soil depth increase. Consequently, it was found that the soil compaction at a shallow depth in soil is larger than that at deep place in soil. 3) The increase of dynamic load and number of passes increased soil stress exponentially, but the increase of inflation pressure increased soil stress linearly. The effect of tire inflation pressure on soil stress was relatively less than that of the dynamic load. Therefore, it was concluded that dynamic load is more important factor affecting soil compaction in comparison to the inflation pressure of tire.

  • PDF

Performance Evaluation of a Full Vehicle with Semi-active MR Suspension at Different Tire Pressure (타이어 압력 변화에 따른 MR 현가장치를 장착한 전체차량의 제어성능평가)

  • Kim, Hyung-Seob;Seong, Min-Sang;Choi, Seung-Bok;Kwon, Oh-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1067-1073
    • /
    • 2011
  • This paper presents the performance of a full vehicle MR suspension system at different tire pressure. The pressure of tire is related to tire stiffness, which is significantly affects the performance of suspension system. Therefore, in this research, the effectiveness of tire pressure on full vehicle MR suspension is evaluated. As a first step, the characteristic of tire with respect to pressure is experimentally tested and modeled. After that, the governing equation of MR damper and full vehicle MR suspension system are derived. The skyhook controller is implemented and the vibration control performance of full vehicle MR suspension is evaluated via simulation with respect to the tire pressure.

Performance Evaluation of a Full Vehicle with Semi-Active MR Suspension at Different Tire Pressure (타이어 압력 변화에 따른 MR 현가장치를 장착한 전체차량의 제어성능평가)

  • Kim, Hyung-Seob;Seong, Min-Sang;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.337-342
    • /
    • 2011
  • This paper presents the performance of a full vehicle MR suspension system at different tire pressure. The pressure of tire is related to tire stiffness, which is significantly affects the performance of suspension system. Therefore, in this research, the effectiveness of tire pressure on full vehicle MR suspension is evaluated. As a first step, the characteristic of tire with respect to pressure is experimentally tested and modeled. After that, the governing equation of MR damper and full vehicle MR suspension system are derived. The skyhook controller is implemented and the vibration control performance of full vehicle MR suspension is evaluated via simulation with respect to the tire pressure.

  • PDF

Effects of the Air-Pressure Asymmetry of Wheelchair Tires on Pelvic Height, Gluteal Pressure, and Muscular Recruitment Pattern in Asymptomatic Participants (타이어 공기압 비대칭이 무증상 대상자의 골반높이, 둔부압력, 근동원패턴에 미치는 영향)

  • Park, Sang-Yeong;Park, Se-Yeon
    • PNF and Movement
    • /
    • v.19 no.3
    • /
    • pp.375-382
    • /
    • 2021
  • Purpose: The objectives of the present study were to investigate the disadvantages of tire pressure asymmetry of a wheelchair tire and recommend the criterion for appropriate tire pressure without generating negative changes in the musculoskeletal system in asymptomatic participants. Methods: Fourteen asymptomatic participants were asked to sit in pressure-controlled wheelchairs and perform desk work for 20 minutes in each tire condition. The asymmetry of the tire conditions was set as 0% difference, 25% difference, and 50% difference from the recommended pressure. The pelvic alignment and muscular recruitment represented as a flexion-relaxation ratio (FRR) were measured at pre-test, and after each condition of desk work. The displacement of the center of pressure (COP) was measured during the desk work. Results: The tire air pressure condition significantly affected the FRR and COP (P < 0.05). Both sides of the FRR values were significantly higher under the symmetrical tire conditions (0% difference) and pre-test, compared with the asymmetrical tire condition of 50% difference (P < 0.05). The mediolateral COP displacement of the asymmetrical tire conditions (25% and 50% difference) was significantly higher than that of the symmetrical tire conditions (0%) (P < 0.05). Conclusion: Asymmetrical tire conditions could cause changes in the muscle recruitment pattern of the erector spine and mediolateral COP displacement. Tire pressure asymmetry higher than 50% could be a risk factor for prevalence of back pain, so this level of asymmetry in tire pressures should be cautioned against for wheelchair users.

Analysis for Internal Flow of Tube on the Self Inflating Tire Using the FSI Method (FSI 기법을 이용한 Self Inflating Tire의 펌핑 튜브 내부 유동 해석)

  • Kim, Myeongjun;Seong, Inchul;Hwang, Inkyeong;Park, Taewon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.660-667
    • /
    • 2016
  • Maintaining proper tire air pressure is an essential element in ensuring vehicle safety. UHP Tires that boast of many safety features are increasing in the market. In particular, the development of "Self-Inflating Tire" technology is accelerating around the globe. Self-inflating tire refers to a technique for maintaining appropriate tire pressure. An internal regulator senses when tire inflation pressure has dropped below the set air pressure. The tire boosts air through the valve when rolling and compressed air enters into the tire. This procedure keeps the tire air pressure at an appropriate level and increases tire safety. Flow analysis of the internal tube is required to examine self-inflating tires. In this study, a method of tube flow analysis using the FSI Method is proposed. The valve system is also implemented to optimize the regulator and sensor.

The Effect of Dynamic Load, Inflation Pressure and Number of Passes of Tire on Soil Compaction under the Tire (타이어의 동하중, 공기압 및 통과횟수가 토양다짐에 미치는 영향)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • This study was carried out to investigate experimentally the effect of three factors(dynamic load, inflation pressure and number of passes of tire) on soil compaction under the tire. The experiment were conducted with a 6.00R14 radial-ply tire for sandy loam soil using soil bin system. To evaluate the effect of three factors on soil compaction under the tire, the sinkage. density and volume of soil under the tire were measured fur the three levels of dynamic load(1.17kN, 2.35kN and 3.53kN), for the three levels of tire inflation pressure(103.42kPa, 206.84kPa and 413.67kPa), and for three different number of passes(1, 3 and 5). The results of this study can be summarized as follows : 1. As dynamic load, inflation pressure and number of passes of the tire increased, soil sinkage and density increased. and volume of soil decreased. Thus increase in dynamic load, inflation pressure and number of passes of the tire would increase soil compaction. 2. The effect of tire inflation pressure on sinkage. density and volume of soil under the tire was relatively less than that of the dynamic load. Therefore, it was concluded that dynamic load was more important factor affecting soil compaction in comparison to the inflation pressure of tire. 3. The effect of three different factors on sinkage, density and volume of soil decreased as the soil depth increase. Consequently, it was fecund that soil compaction at a shallow depth in soil was larger than that at deep place in soil.

Ride Comfort Investigation of 1/4 MR Damper Vehicle under Different Tire Pressure (타이어 압력 변화에 따른 1/4 MR 댐퍼 차량의 승차감 고찰)

  • Maeng, Young-Jun;Seong, Min-Sang;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.343-348
    • /
    • 2011
  • This paper presents ride comfort characteristics of a quarter-vehicle magneto-rheological (MR) suspension system with respect to different tire pressure. As a first step, controllable MR damper is designed and modeled based on both the optimized damping force levels and mechanical dimensions required for a commercial full-size passenger vehicle. Then, a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the MR damper is constructed. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, vertical tire stiffness with respect to different tire pressure is experimentally identified. The skyhook controller is then implemented for the realization of the quarter-vehicle MR suspension system. Finally, the ride comfort analysis with respect to different tire pressure is undertaken in time domain. In addition, a comparative result between controlled and uncontrolled is provided by presenting vertical RMS displacement.

  • PDF