• 제목/요약/키워드: Tire Model

검색결과 310건 처리시간 0.023초

타이어의 2차원 유한 요소 모델 (2-D Finite Element Model of Tires)

  • Kim, Yong-Joe;J. Stuart Bolton
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.314.1-314
    • /
    • 2002
  • It has been shown that the vibrational response of a tire can be represented by a set of decaying waves, each associated with a particular cross-sectional shapes, in the region near the contact patch. Thus, it can be concluded that tires can be effectively modeled as lossy waveguides. It has also been shown that the sound radiation from tires is mainly from the region close to contact patch. (omitted)

  • PDF

멀티스케일 해석을 통한 히스테리시스 고무 마찰 예측 연구 (Predictive Study of Hysteretic Rubber Friction Based on Multiscale Analysis)

  • 남승국;오염락;전성희
    • Tribology and Lubricants
    • /
    • 제30권6호
    • /
    • pp.378-383
    • /
    • 2014
  • This study predicts the of the hysteretic friction of a rubber block sliding on an SMA asphalt road. The friction of filled rubber on a rough surface is primarily determined by two elements:the viscoelasticity of the rubber and the multi-scale perspective asperities of the road. The surface asperities of the substrate exert osillating forces on the rubber surface leading to energy dissipation via the internal friction of the rubber when rubber slides on a hard and rough substrate. This study defines the power spectra at different length scales by using a high-resolution surface profilometer, and uses rubber and road surface samples to conduct friction tests. I consider in detail the case when the substrate surface has a self affine fractal structure. The theory developed by Persson is applied to describe these tests through comparison with the hysteretic friction coefficient relevant to the energy dissipation of the viscoelastic rubber attributable to cyclic deformation. The results showed differences in the absolute values of predicted and measured friction, but with high correlation between these values. Hence, the friction prediction model is an appropriate tool for separating the effects of each factor. Therefore, this model will contribute to clearer understanding of the fundamental principles of rubber friction.

저회(Bottom Ash)와 폐타이어를 활용한 성토구조물 거동에 관한 연구 (Behaviour of Embankment using Bottom Ash-Tire Shred Mixture)

  • 이성진;신민호;고태훈;황선근
    • 대한토목학회논문집
    • /
    • 제29권1C호
    • /
    • pp.21-31
    • /
    • 2009
  • 기존의 연구에서 이미 경량성토재료로서 적용된 바 있는 저회(Bottom Ash), 폐타이어-흙 혼합토의 성능을 토대로 하여, 전통적인 성토재료인 흙 대신 저회를 활용하는 새로운 경량성토재료를 제안한 바 있다. 이어서 이 연구에서는 저회-폐타이어 혼합토의 경량성토재료로서의 적용성을 평가하기 위해 현장다짐시험과 실대형 성토 모형실험을 수행하여 기존의 성토재료인 풍화토만으로 조성된 성토구조물과 저회-폐타이어 혼합토로 조성한 성토구조물에 대한 침하, 토압, 지지력, 진동저감효과 등을 평가하였다. 그 결과 토압 및 진동은 저감되는 효과를 보였으며, 정동적 하중에 따른 침하거동은 두 재료(풍화토 단면, 저회-폐타이어 혼합재료)에서 유사하게 평가되었다.

승용차 조향계의 시미해석 프로그램 개발 (Shimmy Analysis Program Development of Steering System for a Passenger Car)

  • 박상규;송상기;이용호;송각기
    • 동력기계공학회지
    • /
    • 제4권2호
    • /
    • pp.65-70
    • /
    • 2000
  • The shimmy phenomenon, or the radial vibration of steering wheel, happens frequently at a high speed, complicated with suspension system, steering system, vehicle body, engine, transmission and tire. In this study, the suspension system and steering system are modeled by the reference of vehicle body design coordinates(T.L.H), the coordinate system usually used by passenger car maker. In addition, the theoretical results from numerical method have been investigated and compared with the experimental ones by the correlating analysis between the tire and sub-system. The steering and suspension system modeled for the numerical analysis are both independent type. This study developed an analysis program which could forecast the shimmy level in advance by the variation of properties in each system and the change in design of new model.

  • PDF

타이어 벨트 끝단의 피로수명 예측 (Fatigue Life Prediction of Tire Belt Edge)

  • 김재연;양영수;김기운
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.954-957
    • /
    • 2004
  • Tire belt durability is characterized by the initiation of a crack at the belt edge region, and the propagation of the crack until the ply is separated. Experimental methods have been used to analysis of the belt durability in the cord-reinforced rubber composite tires, but it takes much cost and time to make experiments. In this paper, a finite element method to analyze the fatigue life of a crack at the belt edge of tires is presented. The fatigue life is analyzed by using a three-dimensional Finite Element Modeling. This method includes a global-local finite element analysis to provide the detail necessary to model explicitly an internal crack and use of the J-integral for energy release rate evaluation.

  • PDF

타이어의 최적 노면 마찰력을 고려한 ABS 슬라이딩 모드 제어 (ABS Sliding Mode Control considering Optimum Road Friction Force of Tyre)

  • 김정식
    • 한국자동차공학회논문집
    • /
    • 제21권1호
    • /
    • pp.78-85
    • /
    • 2013
  • This paper presents the sliding mode control methods for anti-lock brake system (ABS) with the friction force observer. Using a simplified quarter car model, the sliding mode controller for ABS is designed to track the desired wheel slip ratio. Here, new method to find the desired wheel slip ratio which produces the maximum friction force between road and tire is suggested. The desired wheel slip ratio is varying according road and tire conditions to produce maximum friction force. In order to find optimum desired wheel slip ratio, the sliding mode observer for friction force is used. The proposed sliding mode controller with observer is evaluated in simulation, and the control design is shown to have high performance on roads with constant and varying adhesion coefficients.

타이어의 비선형성 보장을 위한 노면 형상의 재구성 (Regeneration of Road Profile to Compensate Nonlinearties of Tires)

  • 김명규;김광석;유완석
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.199-207
    • /
    • 1999
  • For the stress and vibration analysis of vehicle component by computer simulation, it is necessary to find the forces acting on the vehicle components due to the road profile undulation. A precise modeling of tires is not easy due to nonlinear effects between tire-ground. In this study, a new method is proposed to regenerate road profiles that preserves the same PSD of wheel with a linear tire model. Using the frequency response function between road-wheel , the digital signal processing method, and DADS program , road profile is regenerated from the computer simulation.

  • PDF

차량 속도에 따른 타이어 수막현상의 특성 연구 (Characteristic Study of Tire Hydroplaning Phenomenon to Vehicle Velocity)

  • 손정삼;이홍우;조진래;우종식
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1307-1314
    • /
    • 2005
  • The most important factor of the traffic accident on the wet road is a tire slip caused by hydroplaning. Meanwhile, hydroplaning characteristics are influenced very greatly by the vehicle velocity, so it is very important to reveal the relation between hydroplaning and the vehicle velocity. Since the experiment study is considerably limited, recently the numerical simulation using finite element method(FEM) and finite volume method(FVM) is widely adopted. In this paper, the effect of the vehicle velocity on the hydroplaning characteristics is investigated through the hydroplaning analysis using MSC/Dytran.

Microstructural and mechanical characteristics of self-compacting concrete with waste rubber

  • Hadzima-Nyarko, Marijana;Nyarko, Karlo E.;Djikanovic, Daniela;Brankovic, Goran
    • Structural Engineering and Mechanics
    • /
    • 제78권2호
    • /
    • pp.175-186
    • /
    • 2021
  • Due to the increasing environmental pollution caused by scrap tires, a solution is being sought to recycle and use them in a field of civil engineering, i.e., construction. This paper will provide a brief overview of previous researches that give detailed information on the advantages and disadvantages, considering the microstructural and mechanical characteristics of self-compacting concrete, when waste tire rubber as an aggregate is added. With this aim, a database of 144 different mixtures of self-compacting concrete with partial substitute of natural aggregate with recycled tire rubber (self-compacting rubberized concrete, SCRC) provided by various researchers was created. In this study we show that Gaussian process regression (GPR) modelling is an appropriate method for predicting compressive strength of SCC with recycled tire rubber particles and is in accordance with the results displayed by SEM images.

바퀴 슬립과 잠김 방지 제어를 고려한 차량의 종렬 브레이크 제어 (Vehicle Longitudinal Brake Control with Wheel Slip and Antilock Control)

  • 양홍;최용호;정길도
    • 제어로봇시스템학회논문지
    • /
    • 제11권6호
    • /
    • pp.502-509
    • /
    • 2005
  • In this paper, a 4-wheel vehicle model including the effects of tire slip was considered, along with variable parameter sliding control, in order to improve the performance of the vehicle longitudinal response. The variable sliding parameter is made to be proportional to the square root of the pressure derivative at the wheel, in order to compensate for large pressure changes in the brake cylinder. A typical tire force-relative slip curve for dry road conditions was used to generate an analytical tire force-relative slip function, and an antilock sliding control process based on the analytical tire force-relative slip function was used. A retrofitted brake system, with the pushrod force as the end control parameter, was employed, and an average decay function was used to suppress the simulation oscillations. The simulation results indicate that the velocity and spacing errors were slightly larger than those obtained when the wheel slip effect was not considered, that the spacing errors of the lead and follower were insensitive to the adhesion coefficient up to the critical wheel slip value, and that the limit for the antilock control under non-constant adhesion road conditions was determined by the minimum value of the equivalent adhesion coefficient.