• Title/Summary/Keyword: Tire Damage

Search Result 36, Processing Time 0.049 seconds

Evaluation of Pavement Responses under Wide Base Tire and Dual Tire Assembly (타이어 종류 (Wide Base Tire and Dual Tire Assembly)에 따른 아스팔트 포장 반응 평가)

  • Cho, Seong-Hwan;Im, Jeong Hyuk;Al-Qadi, Imad L.
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.61-71
    • /
    • 2014
  • PURPOSES : The first generation of wide base tires introduced in the early 1980s was found to cause a significant increase in pavement damage compared to dual-tire assemblies. However, wide base tires have evolved considerably, and a new generation of wide base tire is thought to be comparable to conventional dual tires for pavement damage. A challenge associated with using wide base tires is the accurate quantification of pavement damage induced by these tires. The objective of this study was to investigate the responses of flexible pavement to continuously moving vehicular loading under various tire configurations. METHODS : The comparison of the strain/stress responses of full-depth pavement caused by conventional dual tire assembly and new generation of wide-base tires was performed. The FE model incorporates linear viscoelasticity of asphalt material and continuous moving load using implicit dynamic analysis. RESULTS AND CONCLUSIONS : The result demonstrates that the new wide-base tires caused slightly more fatigue damage and less primary rutting damage in HMA layer than a dual-tire assembly, but caused more secondary rutting damage in subgrade than a dual tire assembly.

The Damage Classification by Periodicity Detection of Ultrasonic Wave Signal to Occur at the Tire (타이어에서 발생하는 초음파 신호의 주기성 검출에 의한 손상 분별)

  • Oh, Young-Dal;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.107-111
    • /
    • 2010
  • The damage of tire by damage material classification method is researched as used ultrasonic wave signal to occur at a tire during vehicle driving. Auto-correlation function after having passed through an envelope detecting preprocess is used for detecting periodicity because of occurring periodic ultrasonic waves signal with tire revolution. One revolution cycle time of a damaged tire and period that calculated auto-correlation function appeared equally in experiment. The result that can classification whether or not there was a tire damage is established.

A Study of the Vehicle Tire Damage Detection using Split Spectrum Processing (스플릿 스펙트럼을 이용한 자동차 타이어 손상 검출에 관한 연구)

  • Jeon, Jae-Seok;Kim, Ho-Yeon;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.113-118
    • /
    • 2010
  • The split spectrum processing algorithm of an ultrasonic wave on the tire was studied for the damage detection of a driving vehicle's tire. The processing results of normal and damaged tire was compared using the split spectrum algorithm to estimate the maximum value. The result that used Auto-correlation in case of damaged tire, the damage feature point is detected during 81ms intervals at a speed of 100km/h and during 162ms periodicity at a speed of 50km/h. This results was meaned the possibility for the tire's damage decision by damaging material with using periodicity feature point of tire damage according to vehicle speed.

Damage Classification by Time Density Function of Ultrasonic Pulse Signal occurred at Tire (타이어에서 발생하는 초음파펄스신호의 시간밀도함수에 의한 손상 분별)

  • Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.291-296
    • /
    • 2015
  • The tire damage classification method is researched on the periodicity detection of ramdomness ultrasonic signals to occur at the driving vehicle tire. Setting method of adaptive threshold is proposed in order to valid pulse detection by tire damage in ultrasonic noise on the road and used low pass filter for decrease signal ramdomness as preprocessing. Time interval of detected pulse is setted the density function depend on the vehicle's speed and the method of tire damage detection is proposed that measuring the first peak's time of time density function.The result of time density function in case of one damage material, the first peak's time is measured within the error limit of tire's rotation period, 169.8ms and 97.9ms and 81.8ms, about the speed of 50km/h and 80km/h and 100km/h. In case of more than one damage material, the sum of each peak's time is measured within the error limit of tire's rotation period about the speed.

The Tire Damage Classification by Pulse Interval Time Density Function of Ultrasonic Wave Envelope on Driving (주행 중 타이어 손상에 의해 발생하는 초음파 포락선 신호의 펄스 간격 시간밀도함수에 의한 손상 분별)

  • Shin, Seong-Geun;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.41-46
    • /
    • 2011
  • The tire damage classification method is researched by periodicity detection of ultrasonic envelope signals to occur at the driving vehicle tire. Because periodic signals is generated by rotations of the damaged tire, it should convert to pulse for using the density function. After time intervals of pulses are represented by the density function, the dominant periodicity is detected. The threshold to make a pulse is calculated by moving average of envelope signals. The result of time density function in case of one damage material, the first peak's time is equals to tire's rotation period, 162ms and 102ms, about the speed of 50km/h and 80km/h. In case of more than one damage material, the sum of each peak's time is equals to tire's rotation period about the speed.

Period Detection of Randomness Ultrasonic Signal Occurred Repeatedly by a Tire Damage (타이어 손상에 의해 반복적으로 발생하는 랜덤성 초음파 신호의 주기검출)

  • Jung, Sun-Yong;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.251-258
    • /
    • 2013
  • We studied it about ways to detect damage of a tire about randomness ultrasonic signal which occurs repeatedly while rub a tire of driving car and a road surface. The signal randomness is decreased through the preprocess of short-time energy calculation and the average value of coherence function is used by the normalization expression of the signal randomness. The process limit that can be decide on the dominant period of a signal using the coherence threshold is analyzed and the algorithm to decide the dominant period is proposed by setting up the -3dB threshold of the maximum value on the power spectrum.

Analysis of Temperature Distribution in a Rolling Tire due to Strain Energy Dissipation (회전하는 타이어의 변형에너지 손실에 의한 온도분포 해석)

  • Park, Hyun-Cheol;Youn, Sung-Kie;Song, Tae-Sok;Kim, Nam-Jeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.746-755
    • /
    • 1997
  • This paper addresses the systematic procedure using sequential approach for the analysis of the coupled thermo-mechanical behavior of a steady rolling tire. Not only the knowledge of mechanical stresses but also of the temperature loading in a rolling tire are very important because material damage and material properties are significantly affected by the temperature. In general, the thermo-mechanical behavior of a pneumatic tire is highly complex transient phenomenon that requires the solution of a dynamic nonlinear coupled themoviscoelasticity problem with heat source resulting from internal dissipation and friction. In this paper, a sequential approach, with effective calculation schemes, to modeling this system is presented in order to predict the temperature distribution with reasonable sccuracies in a steady state rolling tire. This approach has the three major analysis modules-deformation, dissipation, and thermal modules. In the dissipation module, an analytic method for the calculation of the heat source in a rolling tire is established using viscoelastic theory. For the verification of the calculated temperature profiles and rolling resistance at different velocities, they were compared with the measured ones.

Analysis of the Cooling Fin for the Temperature Reduction of the Tire Sidewall (타이어 사이드월 온도 저감을 위한 Cooling Fin 해석)

  • Park, JaeHyen;Jung, SungPil;Chang, WonSun;Chun, ChulKyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.862-867
    • /
    • 2014
  • When the vehicle is traveling, the deformation caused by friction continued with the ground is made to occur because the tire is the composite material of a viscoelastic. Part of the deformation energy is converted into heat energy as Hysteresis and temperature inside the tire rises. The generated heat is shed to the outside through the convection and evangelism. Increase in the internal temperature of the tire is difficult to ensure the safety of vehicle by damage to the tire during driving. Recently, Even when the tire is damaged, it is designed to be possible to driving in case of run-flat tires but the fact is that the development of the technology for the synergistic effect of heat release inside the tire by the side reinforcement is necessary. In this study, by using the Finite Element Method (FEM), applying the cooling fins to the tire sidewall, it is intended to check the temperature distribution along the shape of the cooling fins and the temperature reduction effect.

  • PDF

Evaluation on Fatigue Characteristics of Tire Sidewall Rubber according to Aging Temperature

  • Jun, Namgyu;Moon, Byungwoo;Kim, Yongseok;Koo, Jae-Mean;Seok, Chang-Sung;Hong, Ui Seok;Oh, Min Kyeong;Kim, Seong Rae
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.167-172
    • /
    • 2017
  • Ultra-high performance (UHP) tires, for which demand has recently surged, are subject to severe strain conditions due to the low aspect ratio of their sidewalls. It is important to ensure sidewall material durability, since a sudden tire sidewall breakage during vehicle operation is likely to cause a major accident. In the automotive application of rubber parts, cracking is defined as a failure because when cracks occur, the mechanical properties of rubber change. According to Mars, Andre et al., strain and strain energy density (SED) are mainly used as a failure parameters and the SED is generally used as a fatigue damage parameter. In this study, the fatigue life curves of sidewall rubber of tires were determined by using the SED as fatigue damage parameter while the effect of aging on fatigue life was evaluated after obtaining the SED-Nf curves according to aging condition.

A Study on Development of Tire Identification System (ICCAS 2005)

  • Lee, Ki-Seong;Jeong, Tae-Woon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1917-1921
    • /
    • 2005
  • The Bar code, RFID in the standard recognition method for the goods automation of tire manufacture process, sometimes problem occurs with the damage due to a high tension, high fever. So it has problem that needs many instruments to attach it. In this paper, in the letter of tire's surface the Mold ID which has a specific feature it proposed the algorithm for the location detection of acquisition and Mold ID of the image which uses 3 dimension cameras.. It described the method which recognizes the each letter of Mold ID from the location which is detected.

  • PDF