• 제목/요약/키워드: Tire/Road

검색결과 270건 처리시간 0.028초

타이어 접지면의 3축방향 압력과 평면변위 측정을 위한 제어계측시스템의 설계 (A control and measurement system design for 3-axis pressure and 2-axis displacement on tire road interface)

  • 임영철;류영재;조규종;김남전
    • 제어로봇시스템학회논문지
    • /
    • 제1권1호
    • /
    • pp.58-62
    • /
    • 1995
  • Necessarily, it is required to analyze interfacial mechanism between tire and road for understanding tire wear, vehicle tracking and breaking. Therefore, there have been some efforts to measure 3-axis pressure and 2-axis displacement on tire road interface. But it was so hard to couple precisely measuring sensor and desired point on tire tread pattern block that it was impossible to analyze the mechanism on commercial tire with tread pattern. To overcome such a problem, a on-line measurement system is proposed in this paper. And an automatic control system is designed to test the tire with similar configuration of real vehicle driving.

  • PDF

자동차 타이어 패턴 소음 예측에 따른 차량 Road Noise 실험적 평가 (An Experimental Evaluation for Vehicle Road Noise on the Pattern Noise Prediction)

  • 왕성준;이근수;김인동
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.361-364
    • /
    • 2011
  • In this paper, This work demonstrates a experimental evaluation for vehicle road noise NVH performance from the component-level NVH measurements of Tire. The power unit noise from tire emitted by cars has been reduced. It has been found that tire noise dominates noise produced by the power train when vehicles are driven at high constant speed. Therefore tire pattern noise is affected by pattern and vehicle and transmission loss. Tire noise mechanism is generated by several mechanisms. The sound of tire can propagate either through the air or through the structure of vehicle. Pattern noise is the result of pressure variations through the air to the interior side of vehicle. Especially, smooth asphalt, the periodicity of tread design, groove depth is important factor, which have an influence on the reduction of tire pattern noise.

  • PDF

실제 도로 주행과정에서 타이어와 도로의 마찰에 의해서 발생하는 미세입자의 특성연구 (The Properties of Roadway Particles from the Interaction between the Tire and the Road Pavement)

  • 이석환;김홍석;박준혁;조규백
    • 한국대기환경학회지
    • /
    • 제28권2호
    • /
    • pp.131-141
    • /
    • 2012
  • A large fraction of urban $PM_{10}$ concentrations is due to non-exhaust traffic emissions including road dust, tire wear particles, and brake lining particles. Although potential health and environmental impacts associated with tire wear debris have increased, few environmentally and biologically relevant studies of actual tire wear debris have been conducted. Tire wear particles (TWP) are released from the tire tread as a result of the interaction between the tire and the pavement. Roadway particles (RP), meanwhile, are particles on roads composed of a mixture of elements from tires, pavements, fuels, brakes, and environmental dust. The main objective of present study is to identify the contribution of tires to the generation of RP and to assess the potential environmental and health impacts of this contribution. First, a mobile measurement system was constructed and used to measure the RP on asphalt roads according to vehicle speed. The equipment of the mobile system provides $PM_{10}$ concentrations by Dusttrak DRX and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and an aerosol particle sizer (APS). When traveling on an asphalt road at constant speed, there is a clear tendency for $PM_{10}$ concentration to increase slightly in accordance with an increase in the vehicle speed. It was also found that considerable brake wear particles and particles from tire/road interface were generated by rapid deceleration of the vehicle. As a result, the $PM_{10}$ concentration and particle number of ultra-fine particles were measured to be very high.

노면상태, 타이어 공기압 및 축하중이 조향력에 미치는 영향 (The Effect of Ground Condition, Tire Inflation Pressure and Axle Load on Steering Torque)

  • 박원엽;김성엽;이충호;최달문;이상식;이규승
    • Journal of Biosystems Engineering
    • /
    • 제29권5호
    • /
    • pp.419-424
    • /
    • 2004
  • In this study, a series of soil bin experiment was carried out to investigate experimentally the effect of the tire inflation pressure and axle load of tire on the steering torque for the off-road condition. The experiment was performed at the three levels of off-road conditions(ground I, ground II and ground III) and on-road condition(ground IV), four levels of tire inflation pressure(120 kPa, 170 kPa, 220 kPa and 270 kPa), and four levels of axle load(1470N, 1960N, 2450N and 2940N). The results of this study are summarized as follows: 1. Steering torque at the off-road conditions were higher than that on the on-road conditions for all levels of tire inflation pressure and axle load. 2. As the axle load increased, steering torque also increased f3r all experimental ground conditions. 3. For the axle load of 1470N the biggest steering torque was measured on the ground condition I, but as the axle load increased to the value of 2940N the biggest steering torque was measured on the ground condition III. From the above results, it was found that for the low axle load, steering torque gets higher on the soft ground condition, but for the high axle load, steering torque gets higher on hard ground condition for whole range of experimental conditions. 4. As the tire inflation pressure decreased, steering torque increased on the on-road condition, but no specific trend was not found at the off-road conditions.

타이어 공명 소음(Tire Cavity Resonance Noise) 저감에 관한 연구 (The Study of Reduction Technologies of Tire Cavity Resonance Noise)

  • 방명제;최승일;추권철;이홍진;손창억
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.596-599
    • /
    • 2008
  • Traditionally, tire made a role of function, which is supporting vehicle load, making brake, transferring traction, etc. But tire is a part of vehicle design, nowadays. In accordance with this market trend, customers need a wide tread design tire (i.e. low series tire). Generally low Series Tire means stiffer than general tire. That brings out increasing road noise. (Especially tire cavity resonance noise) Tire noise is divided in structure home noise and air borne noise. Tire cavity resonance noise (structure home noise) come from vibration between tire and vehicle. In the study, we investigated that tire cavity resonance noise is affected by stiffness of tread and sidewall.

  • PDF

IRI estimation using analysis of dynamic tire pressure and axle acceleration

  • Zhao, Yubo;McDaniel, J. Gregory;Wang, Ming L.
    • Smart Structures and Systems
    • /
    • 제19권2호
    • /
    • pp.151-161
    • /
    • 2017
  • A new method is developed to estimate road profile in order to estimate IRI based on the ASTM standard. This method utilizes an accelerometer and a Dynamic Tire Pressure Sensor (DTPS) to estimate road roughness. The accelerometer measures the vertical axle acceleration. The DTPS, which is mounted on the tire's valve stem, measures dynamic pressure inside the tire while driving. Calibrated transfer functions are used to estimate road profile using the signals from the two sensors. A field test was conducted on roads with different quality conditions in the city of Brockton, MA. The IRI values estimated with this new method match the actual road conditions measured with Pavement Condition Index (PCI) based on the ASTM standard, images taken from an onboard camera and passengers' perceptions. IRI has negative correlation with PCI in general since they have overlapping features. Compared to the current method of IRI measurement, the advantage of this method is that a) the cost is reduced; b) more space is saved; c) more time is saved; and d) mounting the two sensors are universally compatible to most cars and vans. Therefore, this method has the potential to provide continuous and global monitoring the health of roadways.

회전 및 하중을 받는 타이어의 응력해석에 관한 연구 (A Study on the Finite Element Analysis of Tire under Rolling and Loading Conditions)

  • 황준;남궁석
    • 한국정밀공학회지
    • /
    • 제12권3호
    • /
    • pp.101-109
    • /
    • 1995
  • Axisymmetric and quasi-static finite element analysis of an inflated tire rotating with constant angular velocity and contact to road has been performed. Centrifugal force effect was added to load stiffness matrix and equation of effective material properties were calculated by the Halpin-Tsai formulation. In this report, radial truck/bus tire was analyzed. It was inflated and rotated at speeds up to 140 km/h. Then, contact problem was performed to calculate stress-strain field of tire wiht flat rigid road under the load due to the self-weight of a vehicle. Significant changes of stress-strain field of tire were observed in the finite element analysis. Shear stress, strain and strain energy density were rapidly increased at the dege of #2 belt at freely rotating state. This concentrated stress and strain made belt edge sparation. Under the condition of flat riged road contact, strain energy density of #2 belt, carcass turn-up part were concentrated and bigger values than only freely rotation state. Therefore, dynamic behaivor of tire has to considered as design factors which are affected to belt edge separation and bead breakage.

  • PDF

차량 주행 과정에서 타이어와 도로의 마찰에 의해서 발생하는 도로입자의 특성연구 (Properties of Roadway Particles from the Interaction between Tire and Road Pavement)

  • 이석환;김홍석;박준혁;우세종;곽지현
    • 한국자동차공학회논문집
    • /
    • 제20권6호
    • /
    • pp.24-32
    • /
    • 2012
  • A large fraction of urban $PM_{10}$ concentrations is due to non-exhaust traffic emissions including road dust, tire wear particles, and brake lining particles. Although potential health and environmental impacts associated with tire wear debris have been increased, few environmentally and biologically relevant studies of actual tire wear debris have been conducted. Tire wear particles (TWP) are released from the tire tread as a result of the interaction between the tire and the pavement. Roadway particles (RP), meanwhile, are particles on roads composed of a mixture of elements from tires, pavements, fuels, brakes, and environmental dust. The main objective of present study is to identify the contribution of tires to the generation of RP and to assess the potential environmental and health impacts of this contribution. First, a mobile measurement system was constructed and used to measure the roadway particles on asphalt road according to vehicle speed. The equipment of the mobile system provides $PM_{10}$ concentrations by Dusttrak DRX and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and an aerosol particle sizer (APS). When traveling on an asphalt road at constant speed, there is a clear tendency for PM10 concentration to increase slightly in accordance with an increase in the vehicle speed. It was also found that considerable brake wear particles and particles from tire/road interface were generated by rapid deceleration of the vehicle. The morphology and elements of the roadway particles were also analyzed using SEM-EDX technique.

Characteristics in Densities and Shapes of Various Particles Produced by Friction between Tire Tread and Road Surface

  • Jung, Uiyeong;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • 제57권3호
    • /
    • pp.92-99
    • /
    • 2022
  • A large amount of particles on the roads is produced by friction between the vehicles and the road surface and by inflow from outside. The type of these particles affects the abrasion behavior of tire tread. In this study, road dust collected at a bus stop was separated by size, and the particles with sizes of 106-212 mm were analyzed. The particles were separated by density using NaI and NaBr aqueous solutions with densities in the range of 1.10-1.80 g/cm3 with the 0.10 g/cm3 interval. In the road dust sample, the following particle types were found: tire-road wear particles (TRWPs), asphalt pavement wear particles (APWPs), plant-related particles (PRPs), road paint wear particles (RPWPs), and plastic particles (PPs). The densities of TRWPs, APWPs, PRPs, and RPWPs were 1.20-1.80, >1.60, >1.10, and >1.40 g/cm3, respectively, while PPs were found in all density ranges. Additionally, many small mineral particles were observed on the particles. Order of the relative content of the particles was PRP > TRWP > APWP ~ RPWP > PP. APWPs that were stuck to TRWP could be removed by chloroform treatment. The shapes of the particles were characterized using their magnified images.

공기압에 따른 타이어의 안전성 및 경제성에 관한 실험적 연구 (An Experimental Study of Tire Safety & Economical Efficiency with Respect to Inflation Pressure)

  • 홍승준;이호근
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.8-13
    • /
    • 2010
  • Many vehicles have significantly under-inflated tires, primarily because drivers infrequently check their vehicles' tire pressure. When a tire is used while significantly under-inflated, its sidewalls flex more and the tire temperature increases, increasing stress and the risk of failure. In this study we evaluated tire safety and economical efficiency at various inflation pressure. For tire safety we performed FMVSS indoor durability test, measurement of rolling tire temperature, braking performance at dry/wet road condition, and rolling resistance test for economical efficiency. Results show that low pressure decreases tire durability of both speed-increase condition and load-increase condition. Heat temperature of rolling tire increases as pressure decreases and significantly under-inflated tires cause increase of vehicle's stopping distance at wet road condition. Also Under-inflation increases the rolling resistance of a tire and, correspondingly, decreases vehicle's fuel economy.