• Title/Summary/Keyword: Tip vortex

Search Result 283, Processing Time 0.022 seconds

Detailed Heat Transfer Characteristics on Rotating Turbine Blade (회전하는 터빈 블레이드에서의 열전달 특성)

  • Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1074-1083
    • /
    • 2006
  • In the present study, the effect of blade rotation on blade heat transfer is investigated by comparing with the heat transfer results for the stationary blade. The experiments are conducted in a low speed annular cascade with a single stage turbine and the turbine stage is composed of sixteen guide vanes and blades. The chord length and the height of the tested blade are 150 mm and about 125 mm, respectively. The blade has a flat tip and the mean tip clearance is 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. For the experiments, the inlet Reynolds number is $Re_c=1.5{\times}10^5$, which results in the blade rotation speed of 255.8 rpm. Blade rotation induces a relative motion between the blade and the shroud as well as a periodic variation of incoming flow. Therefore, different heat/mass transfer patterns are observed on the rotating blade, especially near the tip and on the tip. The relative motion reduces the tip leakage flow through the tip gap, which results in the reduction of the tip heat transfer. However, the effect of the tip leakage flow on the blade surface is increased because the tip leakage vortex is formed closer to the surface than the stationary case. The overall heat/mass transfer on the shroud is not affected much by the blade rotation.

Analysis of Flow Phenomena in a Centrifugal Compressor Impeller Operating near Stall (스톨 근처에서 원심압축기 임펠러의 내부 유동현상에 관한 연구)

  • Eum, Hark-Jin;Kang, Shin-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.330-337
    • /
    • 2004
  • Analysis of flow phenomena in a centrifugal compressor impeller has been carried out with numerical simulation to understand the physics of flow near stall. Near stall point, tip leakage flow spills ahead of the leading edge of adjacent blade and other leakage flow passes over the clearance of the adjacent blade instead of rolling up into vortex within the passage. The tip leakage flow at the mid chord of impeller blade impinges against the pressure surface of the adjacent blade and then rolls up into vortex within the passage, which blocks the flow passage and generates viscous loss. The spillage of leakage flow ahead of the adjacent blade generates the recirculation of flow entering the impeller, which causes the power transferred into the flow by the impeller to decrease and blocks the flow passage. Near diffuser hub wall, flow recirculation occurs. As operating point goes to stall point, the core of recirculation approaches the impeller exit The length rises to peak point and then drops with mass flow reduction, while the height steadily rises.

The study of flow structure in a mixing tank for different Reynolds numbers using LES (대형 와 모사를 통한 레이놀즈 수 증가에 따른 혼합 탱크내의 유동 구조의 연구)

  • Yoon, Hyun-Sik;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1806-1813
    • /
    • 2003
  • The stirred tank reactor is one of the most commonly used devices in industry for achieving mixing and reaction. Here we report on results obtained from the large eddy simulations of flow inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius. Stereoscopic PIV measurements (Hill et $al.^{(1)}$) along with the theoretical model of the impeller-induced flow (Yoon et $al.^{(2)}$) were used in defining the impeller-induced flow as superposition of circumferential, jet and tip vortex pair components. Large eddy simulation of flow in a stirred tank was carried out for the three different Reynolds numbers of 4000, 16000 and 64000. The effect of different Reynolds numbers is well observed in both instantaneous and time averaged flow fields. The instantaneous and mean vortex structures are identified by plotting an isosurfaces of swirling strength for all Reynolds numbers. The Reynolds number dependency of the nondimeansional eddy viscosity, resolve scale and subgrid scale dissipations is clearly shown in this study.

  • PDF

The study of Flow Structure in a Mixing Tank for Different Reynolds Numbers Using LES (대형 와 모사를 통한 레이놀즈 수 증가에 따른 혼합 탱크 내의 유동 구조의 연구)

  • Yoon, Hyun-Sik;Chun, Ho-Hwan;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1290-1298
    • /
    • 2003
  • The stirred tank reactor is one of the most commonly used devices in industry for achieving mixing and reaction. Here we report on results obtained from the large eddy simulations of flow inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius. Stereoscopic PlY measurements (Hill et al. $^{(1)}$) along with the theoretical model of the impeller-induced flow (Yoon et al. $^{(2)}$) were used in defining the impeller-induced flow as superposition of circumferential, jet and tip vortex pair components. Large eddy simulation of flow in a stirred tank was carried out for the three different Reynolds numbers of 4000, 16000 and 64000. The effect of different Reynolds numbers is well observed in both instantaneous and time averaged flow fields. The instantaneous and mean vortex structures are identified by plotting an isosurfaces of swirling strength for all Reynolds numbers. The Reynolds number dependency of the non-dimensional eddy viscosity, resolved scale and subgrid scale dissipations is clearly shown in this study.

Modeling of Deviation Angle and Pressure Loss Due to Rotor Tip Leakage Flow Effects in Axial Turbines (축류터빈에서 끝간격 유동에 의한 편향각과 압력손실의 모형)

  • Yoon, Eui Soo;Park, Moo Ryong;Chung, Myung Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1591-1602
    • /
    • 1998
  • Simple spanwise distribution models of deviation angle and pressure loss coefficient due to the tip leakage flow are formulated for use in association with the streamline curvature method as a flow analysis. Combining these new models with the previous deviation and loss models due to secondary flow, a robust streamline curvature method is established for flow analysis of single-stage, subsonic axial turbines with wide ranges of turning angle, aspect ratio and blading type. At the exit from rotor rows, the flow variables are mixed radially according to a spanwise transport equation. The proposed streamline curvature method is tested against a forced vortex type turbine as well as a free vortex type one. The results show that the spanwise variations of flow angle, axial velocity and loss coefficients at rotor exit are predicted with good accuracy, being comparable to a steady three-dimensional Navier-Stokes analysis. This simple and fast flow analysis is found to be very useful for the turbine design at the initial design phase.

Numerical Evaluation of Hovering Performance of Next Generation Rotor Blade(Nrsb-1) (차세대 로터 블레이드(NRSB-1)의 제자리 비행 성능 해석)

  • Lee,Gwan-Jung;Hwang,Chang-Jeon;Kim,Jae-Mu;Ju,Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.69-74
    • /
    • 2003
  • By employing vane tip concept, a new rotor blade (NRSB-I) has been designed to enhance the noise characteristics of BERP blade. Numerical analyses have been performed for hovering rotor and the results are compared with respect to those of original BERP blade. Although the thrust of designed rotor decreases by 6-7% due to cutout at the tip region, the results indicate that the actual performance loss is negligible because power reduction is greater than thrust loss. It is also found that aerodynamic fence is required at the outboard kink to obtain clearly separated twin-vortices because the vortex generated at kink is diffused during the convection over the blade surface.

PIV Velocity Field Measurements of Flow around a Ship with Rotating Propeller (PIV를 이용한 선박 프로펠러 후류의 속도장 계측)

  • 이상준;백부근
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.5
    • /
    • pp.17-25
    • /
    • 2003
  • Velocity field behind a container ship model with a rotating propeller has been investigated using PIV (particle image velocimetry) system. Four hundred instantaneous velocity fields were measured at 4 different blade phases and ensemble-averaged to investigate the spatial evolution of vortical structure of near wake within one propeller diameter downstream. The phase-averaged mean velocity fields show the potential wake and the viscous wake formed due to the boundary layers developed on the blade surfaces. The interaction between bilge vortex developed along the hull surface and the tangential velocity component of incoming flow causes to have asymmetric flow structure in the transverse plane.

How Birds and Insects Fly (곤충과 새의 비행방법)

  • Hong, Young-Sun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.130-143
    • /
    • 2007
  • Using steady state aerodynamic theories, it has been claimed that insects and birds cannot fly. To make matters worse, insects and birds fly at low Reynolds numbers. Therefore, a recurring theme in the literature is the importance of understanding unsteady aerodynamic effect and how the vortices behave when they separate from the moving surface that created them. In flapping flight, birds and insects can modify wing beat amplitude, stroke angle, wing planform area, angle of attack, and to a lesser extent flapping frequency to optimize the generation of lift force. Some birds are thought to employ two different gaits(a vortex ring gait and a continuous vortex gait) and unsteady aerodynamic effect(Clap and fling, Delayed stall, Wake capture and Rotational Circulation) in flapping flight. Leading edge vortices may produce an increase in lift. The trailing edge vortex could be an important component in gliding flight. Tip vortices in hovering support the body weight of the hummingbirds. Thus, this study investigated how insects and birds generate lift at low Reynolds numbers. This research is written to further that as yet incomplete understanding.

Effect of the Flow Actuator on the Asymmetric Vortex at High Angle of Attack (고받음각 오자이브의 비대칭 와류에 작용하는 구동기 효과 분석)

  • Lee, Eunseok;Lee, Jin Ik;Lee, Kwang Seop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.607-612
    • /
    • 2013
  • The effect of the flow actuator on the asymmetric vortex structure around the ogive-cylinder body with fineness ratio of 4 flying at the speed of Mach 0.1 at angle of attack of 50 degree is studied. The ogive-cylinder model is developed with the actuator placed near the nose tip and numerically simulated using the in-house CFD code named KFLOW. The numerical simulation employs two different actuator modeling: one is the boundary condition given by blowing normal to the surface and another shearing on the surface. The numerical simulation reveals that response of the vortex structure to the actuation is dependent on the type of modeling as well as the strength and direction of the actuation.

Wake Shapes Behind Wings in Close Formation Flight Near the Ground

  • Han Cheolheui;Cho Leesang;Cho Jinsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.674-681
    • /
    • 2005
  • The unsteady evolution of trailing vortex sheets behind wings in close formation flight near the ground is simulated using a discrete vortex method. The ground effect is included by an image method. The method is validated by comparing computed results with other numerical results. For a lifting line with an elliptic loading, the ground has an effect of moving wingtip vortices laterally outward and suppressing the development of vortex evolution. The gap between wings in close formation flight has an effect of moving up wingtip vortices facing each other. For wings flying in parallel, the ground effect causes the wingtip vortices facing each other to move up, and it makes the opposite wing tip vortices to move laterally outward. When there is a relative height between the wings in ground effect, right-hand side wingtip vortices from a mothership move laterally inward.