• Title/Summary/Keyword: Tip leakage flow cavity

Search Result 8, Processing Time 0.009 seconds

Three-Dimensional Flow and Aerodynamic Loss in the Tip-Leakage Flow Region of a Turbine Blade with Pressure-Side Winglet and Suction-Side Squealer (압력면윙렛/흡입면스퀼러형 터빈 동익 팁누설영역에서의 3차원유동 및 압력손실)

  • Cheon, Joo Hong;Kang, Dong Bum;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.399-406
    • /
    • 2014
  • Three-dimensional flow and aerodynamic loss in the tip-leakage flow region of a turbine blade equipped with both a pressure-side winglet and a suction-side squealer have been measured for the tip gap-to-span ratio of h/s = 1.36%. The suction-side squealer has a fixed height-to-span ratio of $h_s/s$ = 3.75% and the pressure-side winglet has width-to-pitch ratios of w/p = 2.64%, 5.28%, 7.92% and 10.55%. The results are compared with those for a plane tip and for a cavity squealer tip of $h_{ps}/s$ = 3.75%. The present tip delivers lower loss in the passage vortex region but higher loss in the tip-leakage vortex region, compared to the plane tip. With increasing w/p, its mass-averaged loss tends to be reduced. Regardless of w/p, the present tip provides lower loss than the plane tip but higher loss than the cavity squealer tip.

Effect of Tip Gap Height on Heat/Mass Transfer over a Cavity Squealer Tip (팁간극높이가 전면스퀼러팁 표면의 열전달 특성에 미치는 영향)

  • Kang, Dong Bum;Moon, Hyun Suk;Lee, Sang Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.19-25
    • /
    • 2013
  • The effect of tip gap height on heat/mass transfer characteristics on the floor of cavity squealer tip has been investigated in a turbine cascade for power generation by employing the naphthalene sublimation technique. The squealer rim height is chosen to be an optimal one of $h_{st}/c$ = 5.51% for the tip gap height-to-chord ratios of h/c = 1.0, 2.0, 3.0 and 4.0%. The results show that heat transfer on the cavity floor is strongly dependent upon the behavior of the cavity flow falling down onto the floor. For lower h/c, the floor heat transfer is influenced by the tip leakage flow falling down along the inner face of the suction-side squealer, whereas the floor heat transfer for higher h/c is augmented mainly due to the impingement of leakage flow on the floor near the leading edge. Compared to the plane tip surface heat transfer, the cavity floor heat transfer is less influenced by h/c. For h/c = 1.0%, the average thermal load is as low as a half of the plane tip surface one, and the difference in the thermal load between the two cases tends to decrease with increasing h/c.

Numerical Prediction of a Performance Change in a Compressor Shrouded Impeller with Cavity Leakage Flow (슈라우드 임펠러에서 누설 유동이 압축기 성능에 미치는 영향에 대한 수치해석적 연구)

  • Choi, Min-Uk;Joo, Won-Gu;Park, Jun-Young;Yoon, Eui-Soo;Choi, Sang-Kyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.64-69
    • /
    • 2012
  • Generally the Shrouded type impeller is considered to free from the loss of tip leakage flow, but it is actually not possible to complete sealing between the rotating impeller and the sealing which is stay still. As a result, there is the possibility of flow leaking between impeller exit to entrance, especially with high pressure ratio compressor machine. The Cavity leakage flow is expected to influence negative effect on a machine performance and also inner flow structure. In this study, Impeller with shroud-casing gap leakage flow is simulated by numerical method (Using CFX 12.1). The influence of leakage flow on compressor performance and efficiency will be analysed, also detail flowfield change will posted.

Three-Dimensional Flow and Aerodynamic Loss Downstream of Turbine Rotor Blade with a Cutback Cavity Squealer Tip (터빈 동익 컷백스퀼러팁 하류에서의 3차원 유동 및 압력손실)

  • Kim, Seon-Ung;Lee, Sang-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.48-54
    • /
    • 2011
  • The effect of channel cutback on three-dimensional flow fields and aerodynamic losses downstream of a cavity squealer tip has been investigated in a turbine rotor cascade for the squealer rim height-to-chord ratio and tip gap height-to-chord ratio of $h_{st}/c$ = 5.51% and h/c = 2.0% respectively. The cutback length-to-camber ratio is changed to be $CB/c_c$ = 0.0, 0.1, 0.2 and 0.3. The results show that longer cutback delivers not only stronger secondary flow but also higher aerodynamic loss in the tip leakage vortex region, meanwhile it leads to lower aerodynamic loss in the passage vortex region. The discharge of cavity fluid through the cutback opening provides a beneficial effect in the reduction of aerodynamic loss, whereas there also exists a side effect of aerodynamic loss increase due to local wider tip gap near the trailing edge. With increasing $CB/c_c$ from 0.0 to 0.3, the aerodynamic loss coefficient mass-averaged all over the measurement plane tends to increase slightly.

Numerical Study of Film Cooling Characteristics in Turbine Blade Cavity (터빈 블레이드 캐버티 내 막냉각 특성에 관한 수치해석적 연구)

  • Kim, Kyung-Seok;Cho, Hyung-Hee;Kang, Shin-Hyoung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.648-651
    • /
    • 2008
  • Numerical calculations are performed to simulate the film cooling effect of turbine blade tip with squealer rim. Because of high temperature of inside rim, squealer rim is damaged easily. Therefore many various cooling systems were used. The calculations are based on 100,000 Reynolds number in linear cascade model. A blade has 2% tip clearance and 8.4% rim height. The axial chord length and turning angle is 237mm, 126$^{\circ}$. Numerical calculations are performed without and with film cooling. In a film cooling in the cavity, hot spots of cavity were cooled effectively. However hot spots of suction side rim still remains. The CFD results show that the circulation flow in cavity of squealer tip affects the temperature rise of squealer rim. To maintain the blade integrity and avoid the excessive hot spot of blade, rearrangement of cooling hole is needed.

  • PDF

Tip Gap Flow and Aerodynamic Loss Generation over a Cavity Squealer Tip with the Variation of Pressure-Side Opening Length in a Turbine Cascade (스퀼러팁의 압력면 개방길이 변화에 따른 터빈 익렬 팁간극 유동 특성 및 압력손실)

  • Cheon, Joo Hong;Lee, Sang Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.5-10
    • /
    • 2012
  • The effect of pressure-side opening length on three-dimensional flow fields and aerodynamic losses downstream of a cavity squealer tip has been investigated in a turbine rotor cascade for the squealer rim height-to-chord ratio and tip gap height-tochord ratio of $h_{st}/c$ = 5.05% and h/c = 2.0% respectively. The opening length-to-camber ratio is changed to be $OL/c_c$ = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.7 The results show that longer OL leads not only to weaker secondary flow but also to lower aerodynamic loss in the tip leakage vortex region, while it significantly widens the area with high aerodynamic loss in the passage vortex region. The aerodynamic loss coefficient mass-averaged all over the measurement plane is kept almost constant for $0.0{\leq}OL/c_c{\leq}0.3$, whereas it increases rapidly for $OL/c_c$ > 0.3 in proportion to $OL/c_c$. There is little deterioration in flow turning with increasing $OL/c_c$.

Inducer Design to Avoid Cavitation Instabilities

  • Kang, Dong-Hyuk;Watanabe, Toshifumi;Yonezawa, Koichi;Horiguchi, Hironori;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.439-448
    • /
    • 2009
  • Three inducers were designed to avoid cavitation instabilities. This was accomplished by avoiding the interaction of tip cavity with the leading edge of the next blade. The first one was designed with extremely larger leading edge sweep, the second and third ones were designed with smaller incidence angle by reducing the inlet blade angle or increasing the design flow rate, respectively. The inducer with larger design flow rate has larger outlet blade angle to obtain sufficient pressure rise. The inducer with larger sweep could suppress the cavitation instabilities in higher flow rates more than 95% of design flow coefficient, owing to weaker tip leakage vortex cavity with stronger disturbance by backflow vortices. The inducer with larger outlet blade angle could avoid the cavitation instabilities at higher flow rates, owing to the extension of the tip cavity along the suction surface of the blade. The inducer with smaller inlet blade angle could avoid the cavitation instabilities at higher flow rates, owing to the occurrence of the cavity first in the blade passage and its extension upstream. The cavity shape and suction performance were reasonably simulated by three dimensional CFD computations under the steady cavitating condition, except for the backflow vortex cavity. The difference in the growth of cavity for each inducer is explained from the difference of the pressure distribution on the suction side of the blades.