• 제목/요약/키워드: Tip design

검색결과 747건 처리시간 0.061초

Study of the Flow in Centrifugal Compressor

  • Xu, Cheng;Amano, Ryoichi Samuel
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권3호
    • /
    • pp.260-270
    • /
    • 2010
  • Reducing the losses of the tip clearance flow is one of the keys in an unshrouded centrifugal compressor design and development because tip clearances are large in relation to the span of the blades and also centrifugal compressors produce a sufficiently large pressure rise in single stage. This problem is more acute for a low flow high-pressure ratio impeller design. The large tip clearance would cause flow separations, and as a result it would drop both the efficiency and surge margin. Thus a design of a high efficiency and wide operation range low flow coefficient centrifugal compressor is a great challenge. This paper describes a recent development of high efficiency and wide surge margin low flow coefficient centrifugal compressor. A viscous turbomachinery optimal design method developed by the authors for axial flow machine was further extended and used in the centrifugal compressor design. The compressor has three main parts: impeller, a low solidity diffuser and volute. The tip clearance is under a special consideration in this design to allow impeller insensitiveness to the clearance. A patented three-dimensional low solidity diffuser design method is used and applied to this design. The compressor test results demonstrated to be successful to extend the low solidity diffusers to high-pressure ratio compressor. The compressor stage performance showed the total to static efficiency of the compressor being about 85% and stability range over 35%. The test results are in good agreement with the design.

주사침 말단의 형상과 위치, 세척액 주입속도가 치근단에 작용하는 압력에 미치는 영향 (Effect of needle tip design and position, and irrigant flow rate on apical pressure)

  • 이창하;조설아;임범순;이인복
    • 대한치과재료학회지
    • /
    • 제45권4호
    • /
    • pp.275-286
    • /
    • 2018
  • 본 연구에서는 근관 내의 주사침 말단의 위치, 근관 세척액의 주입 속도, 주사침 말단의 형상이 근관 세척 시 발생하는 치근단 압력에 미치는 영향을 평가하고자 하였다. 5개의 사람 하악 소구치에 근관 와동 형성 후 #35(0.06 taper) 니켈-티타늄 회전식 기구로 근관을 형성하였다. 주사침 말단의 형상에 따라 구분되는 notched, side-vented, flat 3가지 종류의 주사침을 근단 협착부로부터 치관 방향으로 1, 3, 5 mm 거리가 되는 지점(주사침 말단의 위치)에 위치시켰다. 각 군에 대하여 세척액 주입 속도는 0.05, 0.1, 0.2, 0.3 ml/s로 변화시키면서 치근단 압력을 측정하였다. 나머지 조건이 동일한 경우 주사침 말단의 위치가 감소할수록, 세척액 주입 속도가 증가할수록 치근단 압력은 유의하게 증가하였다(p<0.05). 주사침 말단의 위치와 세척액 주입 속도가 동일한 조건 하에서 side-vented 주사침이 가장 낮은 치근단 압력을 보였고, notched, flat 주사침 순서로 치근단 압력이 유의하게 증가하였다(p<0.05). 주사침 말단의 위치가 1 mm인 군 또는 세척액 주입 속도가 0.1 ml/s 이상인 군에서는 나머지 조건에 관계없이 모든 경우에서 중심정맥압(5.88mmHg)보다 높은 치근단 압력을 나타냈다. Flat 주사침은 세척액 주입 속도와 주사침 말단의 위치에 따른 치근단 압력의 급격한 증가로 인해 임상에서 사용이 추천되지 않으며, 안전하고 효율적인 근관 세척을 수행하기 위해서는 근단 협착부로부터 치관 방향으로 3 mm 떨어진 지점에 주사침 말단을 위치시키고 0.05 ml/s 이하의 세척액 주입 속도로 근관 세척액을 적용해야 할 것이다.

P.O.W 상태에서의 Tip Rake Propeller에 대한 성능연구 (A Study on Performance of Tip Rake Propeller in Propeller Open Water Condition)

  • 이준형;김문찬;신용진;강진구;장현길
    • 대한조선학회논문집
    • /
    • 제54권1호
    • /
    • pp.10-17
    • /
    • 2017
  • This paper deals with a comparison of performance between tip rake propeller and normal propeller in P.O.W condition. In comparison with normal propeller, tip rake propeller is good at preventing occurring negative effect: tip vortex, etc. But, officially formulated information about tip rake propeller doesn't become known. So this paper makes design variables about rake factors and applies them to propeller geometry. And propellers applied design variables are compared with each other about open water propeller efficiency. Also this paper confirms a vorticity reduction at propeller tip.

입사각 변화에 따른 터빈 블레이드에서의 열전달 특성 변화 (II) - 블레이드 표면 - (Effect of Incidence Angle on Turbine Blade Heat Transfer Characteristics (II) - Blade Surface -)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제31권4호
    • /
    • pp.357-366
    • /
    • 2007
  • The present study investigated local heat/mass transfer characteristics on the surface of the rotating turbine blade with various incidence angles. The experiments are conducted in a low speed annular cascade with a single stage turbine. The blade has a flat tip with the mean tip clearance of 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. At design condition, the inlet Reynolds number is $Re_c=1.5{\times}10^5$ which results in the blade rotation speed of 255.8 rpm. Also, the effect of off-design condition is examined with various incidence angles between $-15^{\circ}$ and $+7{\circ}$. The results indicated that the incidence angle has significant effects on the blade surface heat transfer. In mid-span region, the laminar separation region on the pressure side is reduced and the laminar flow region on the suction side shrinks with increasing incidence angle. Near the tip, the effect of tip leakage flow increases in span wise and axial directions as the incidence angle decreases because the tip leakage flow is formed near the suction side surface. However, the effect of tip leakage flow is reduced with positive incidence angle.

L-Shaped Columellar Strut in East Asian Nasal Tip Plasty

  • Dhong, Eun-Sang;Kim, Yeon-Jun;Suh, Man Koon
    • Archives of Plastic Surgery
    • /
    • 제40권5호
    • /
    • pp.616-620
    • /
    • 2013
  • Background Nasal tip support is an essential consideration for rhinoplasty in East Asians. There are many techniques to improve tip projection, and among them, the columellar strut is the most popular technique. However, the conventional design is less supportive for rotating the tip. The amount of harvestable septal cartilage is relatively small in East Asians. For an optimal outcome, we propose an L-shaped design for applying the columellar strut. Methods To evaluate the anthropometric outcomes, the change in nasal tip projection and the columella-labial angle were analyzed by comparing preoperative and postoperative photographs. The anthropometric study group consisted of 25 patients who underwent the same operative technique of an L-shaped strut graft using septal cartilage and were followed up for more than 9 months. Results There were statistically significant differences between the preoperative and postoperative values in the nasal tip projection ratio and columella-labial angle. We did not observe any complications directly related to the L-shaped columellar strut in the anthropometric study group. Conclusions The L-shaped columellar strut has advantages not only in the controlling of tip projection and rotation, but in that it needs a smaller amount of cartilage compared to the conventional septal extension graft. It can therefore be an alternative technique for nasal tip plasty when there is an insufficient amount of harvestable septal cartilage.

전복방지를 위한 가변 구조 이동 로봇의 설계와 구현 (Design and Implementation of a Mobile Robot with a Variable Structure for Tip-over Prevention)

  • 이성민;박정길;박재병
    • 제어로봇시스템학회논문지
    • /
    • 제21권4호
    • /
    • pp.356-360
    • /
    • 2015
  • In this paper, we design and implement a mobile robot with variable structure for tip-over prevention. The mobile robot is designed for the purpose of stable drive and work in outdoor terrain. The outdoor terrain is rough and uneven. In this terrain, the tip-over of the mobile robot can occur while driving and working. Therefore, the structure of the mobile robot must be designed in consideration of stable drive and work. The proposed structure is defined as an X-shape for overall balance of the mobile robot. The shape is designed by using a multi-level structure for reducing the size of the robot. To verify the effectiveness of the proposed design, we analyze the tip-over characteristics according to the height of gravitational center and the extension length of the robot. Finally, we develop a prototype of the mobile robot with variable structure, taking the results of the tip-over analysis into consideration.

유연한 Quality factor가 가능한 단순한 광섬유 팁 공진 구조물 (Simple fiber tip assembly with flexible Quality factor)

  • 나경필;권오대
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2002년도 제13회 정기총회 및 2002년도 동계학술발표회
    • /
    • pp.260-261
    • /
    • 2002
  • For Near-field Scanning Optical Microscopy measurements, the fiber tip is glued on the side of one of the tuning fork prongs vertically to its extended direction. Higher Q-factor is attainable in this geometry than in the arrangement with the fiber tip parallel to the prong. A simple mechanical design is applied to hold the fiber tip above the gluing point. The overall tuning fork-fiber tip assembly gives another advantage of the flexible Q-factor enhancement. With this treatment, Q-factor higher than 3000 is easily achievable. As an operating instance, a grating is scanned for its one dimensional topographical image.

  • PDF

500kW급 수평축 조류발전기의 수력 최적 설계 (Hydrodynamically Optimal Blade Design for 500kW Class Horizontal Axis Tidal Current Turbine)

  • 유기완
    • 한국태양에너지학회 논문집
    • /
    • 제29권5호
    • /
    • pp.73-80
    • /
    • 2009
  • A tidal current turbine is designed and analyzed numerically by using blade element momentum theory. The rated power has a limitation because the diameter of the tidal current turbine cannot exceed the depth of sea water. This study investigates a horizontal axis tidal-current turbine with a rated power of 500 kW. NACA-6 series laminar foil shape is used for basic airfoil along the blade span. The distributions of chord length and twist angle along the blade span are obtained from the hydrodynamic optimization procedure. Prandtl's tip loss correction and angle of attack correction considering the three-dimensional effect are applied for this study. The power coefficient curve shows maximum peak at the rated tip speed ratio of 6.0, and the maximum torque coefficient is developed at the tip speed ratio of 4. The drag coefficient reaches about 0.85 at the design tip speed ratio.

천음속 회전익에서의 누설유동 (Tip Leakage Flow on the Transonic Compressor Rotor)

  • 박준영;정희택;백제현
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.244-249
    • /
    • 2002
  • It is known that tip clearance flows reduce the pressure rin, flow range and efficiency of the turbomachinery. So, the clear understanding about flow fields in the tip region is needed to efficiently design the turbomachinery. The Navier-Stokes code with the proper treatment of the boundary conditions has been developed to analyze the three-dimensional steady viscous flow fields in the transonic rotating blades and a numerical study has been conducted to investigate the detail flow physics in the tip region of transonic rotor, NASA Rotor 67. The computational results in the tip region of transonic rotors show the leakage vortices, leakage flow from pressure side to suction side and their interaction with a shock Depending on the operating conditions, the position of shock-wave on the blade surface are v8y different close to the blade tip of the transonic compressor rotor. The shock-wave position dose to the blade tip had the dose relationship with the starting position of leakage vortex and the direction of leakage flow.

  • PDF

대칭 팁 간극에 기인한 고속으로 회전하는 압축기에서의 유동 (Flow in a High Speed Compressor Due to Axisymmetric Tip)

  • 주현석;송성진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.279-283
    • /
    • 2002
  • The effects of finite gap at the tip of turbomachinery blades have long been topics of both theoretical and experimental research because tip clearance degrades turbomachinery performance. This paper presents an analytical study of radial flow redistribution in a high speed compressor stage with axisymmetric tip clearance. The flow is assumed to be inviscid and compressible. The stage is modeled as an actuator disc and the analysis is carried out in the meridional plane. Upon going through the stage, the radially uniform upstream flow splits into the tip clearance and passage flows. The tip clearance flow is modeled as a jet driven by blade loading, or pressure difference between the pressure and suction sides. The model takes into consideration the detached shocks which occur in the rotor passage at the design point. This shock model is used to calculate the density ratio across the stage. Thus, the model is capable of predicting the kinematic effects of tip clearance in the high speed compressor flow field.

  • PDF