• Title/Summary/Keyword: Tip axial length

Search Result 35, Processing Time 0.023 seconds

Aero-acoustic Performance Pprediction Method and Parametric Studies of Axial Flow Fan (축류 홴의 공력-음향학적 성능 예측방법 및 매개변수 연구)

  • Lee, Chan
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.661-669
    • /
    • 1996
  • Proposed is an aero-acoustic performance prediction method of axial fan. The fan aerodynamic performance is predicted by combining pitch-averaged quasi 3-D flow analysis with pressure loss models for blade boundary layer and wake, secondary flow, endwall boundary layer and tip leakage flows. Fan noise is assumed to be radiated as dipole distribution type, and its generation is assumed to be mainly due to the vortex street shed from blade trailing edge. The fluctuating pressure and lift on the blade surface are analyzed by incorporating the wake vortex stree shed from blade trailing edge. The fluctuating pressure and lift on the blade surface are analyzed by incorporating the wake vortex street model with thin airfoil theory. The aero-acoustic performance prediction results by the present method are in good agreement with the measured results of several axial fans. With the present prediction method, parametric studies are carried out to investigate the effects of blade chord length and spacing on the efficiency and the noise level of fan. In the case of lightly loaded fan, both efficiency improvement and noise reduction can be achieved by decreasing chord length or by increasing blade specing. However, when fan is designed at highly loaded condition, the noise reduction by increasing blade spacing penalizes the attaninable efficiency of fan.

  • PDF

The influence of co-axial air flow on the breakup length of a smooth liquid jet (平滑流의 分裂길이에 미치는 同軸氣流의 영향)

  • 김덕줄;이충원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1390-1398
    • /
    • 1988
  • The purpose of this study was experimentally to investigate the disintegration process and disintegration mechanism when co-axial air flows vertically for the longest smooth liquid jet. These were affected by liquid velocity, air velocity, air-to-liquid diameter ratio, nozzle shape, and air-liquid contacting position. That is, this process of disintegration of the liquid jet was similar to that occurred when liquid pressure was increased. At Reynolds number of 10, 000 and below, the changes in the breakup length represent different tendency according to liquid flow rate. The influence of air flow on the disintegration of liquid jet was different according to air-to-liquid diameter ratio, air orifice diameter, nozzle shape and contacting position of liquid and air. In particular, when the tip of liquid nozzle was inside the air orifice, the effect of air flow was the larger than outside the air orifice. The effect of liquid mass flow rate on the change rate of the breakup length was also different.

Theoretical models of threshold stress intensity factor and critical hydride length for delayed hydride cracking considering thermal stresses

  • Zhang, Jingyu;Zhu, Jiacheng;Ding, Shurong;Chen, Liang;Li, Wenjie;Pang, Hua
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1138-1147
    • /
    • 2018
  • Delayed hydride cracking (DHC) is an important failure mechanism for Zircaloy tubes in the demanding environment of nuclear reactors. The threshold stress intensity factor, $K_{IH}$, and critical hydride length, $l_C$, are important parameters to evaluate DHC. Theoretical models of them are developed for Zircaloy tubes undergoing non-homogenous temperature loading, with new stress distributions ahead of the crack tip and thermal stresses involved. A new stress distribution in the plastic zone ahead of the crack tip is proposed according to the fracture mechanics theory of second-order estimate of plastic zone size. The developed models with fewer fitting parameters are validated with the experimental results for $K_{IH}$ and $l_C$. The research results for radial cracking cases indicate that a better agreement for $K_{IH}$ can be achieved; the negative axial thermal stresses can lessen $K_{IH}$ and enlarge the critical hydride length, so its effect should be considered in the safety evaluation and constraint design for fuel rods; the critical hydride length $l_C$ changes slightly in a certain range of stress intensity factors, which interprets the phenomenon that the DHC velocity varies slowly in the steady crack growth stage. Besides, the sensitivity analysis of model parameters demonstrates that an increase in yield strength of zircaloy will result in a decrease in the critical hydride length $l_C$, and $K_{IH}$ will firstly decrease and then have a trend to increase with the yield strength of Zircaloy; higher fracture strength of hydrided zircaloy will lead to very high values of threshold stress intensity factor and critical hydride length at higher temperatures, which might be the main mechanism of crack arrest for some Zircaloy materials.

MACROSCOPIC STRUCTURE AND ATOMIZATION CHARACTERISTICS OF HIGH-SPEED DIESEL SPRAY

  • Park, S.-W.;Lee, C.-S.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.157-164
    • /
    • 2003
  • An experimental and numerical study was performed to investigate the macroscopic and microscopic atomization characteristics of high-speed diesel spray issued from the common-rail injection system. For the experiments, spray visualization system and a phase Doppler particle analyzer system were utilized to obtain the spray atomization characteristics such as the process of spray development, spray tip penetration, and SMD distribution. In order to analyze the process of spray atomization with KIVA-3 code, the TAB breakup model is changed to the KH-DDB competition model, which assumes the competition between the wave instability and droplet deformation causes the droplet breakup above the breakup length. The calculated results were also compared with the experiments in terms of spray tip penetration and SMD distribution. The results provide the process of spray development, axial and radial distribution of SMD, and calculated overall SMD as a function of time after start of injection.

A Study on the Noise Reduction of Axial Flow Fan by Experimental Method (실험적 방법에 의한 축류형 팬의 소음저감에 관한 연구)

  • 김동규;오재응;임동규
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.28-35
    • /
    • 1993
  • 팬소음은 설계변수들과 관계가 있으므로 본 논문은 실험적 방버벵 의하여 팬소음과 설계변수의 관계를 고찰하였다. 설계변수는 팬소음에 특히 영향이 큰 날개수, 날개각도, 날개끝 간극을 선택하였으며 새로운 설계변수로서 동익과 정익간의 간극과 흡입구 길이를 고찰하였다. 본 논문은 팬소음에 대한 관련된 이론을 정리하였으며 축류형 팬의 고효율 저소음 설계를 위한 방안을 제시하였다. 흡입구 길이, 날개끝 간극, 동익과 정익간의 간극등의 설계변소를 변경하여 실험한 결과 이들 설계변수들의 조정에 m이하여 축류형 팬의 고효율 저소음화를 이룰 수 있었다.

  • PDF

Analytical crack growth in unidirectional composite flywheel

  • Lluis Ripoll;Jose L. Perez-Aparicio;Pere Maimi;Emilio V. Gonzalez
    • Coupled systems mechanics
    • /
    • v.12 no.2
    • /
    • pp.183-197
    • /
    • 2023
  • Scarce research has been published on crack propagation fracture of flywheels manufactured with carbon fiber-reinforced polymers. The present work deals with a calculation method to determine the conditions for which a crack propagates in the axial direction of the flywheel. The assumptions are: flywheels made with just a single thick ply or ply clustering laminates, oriented following the hoop direction; a single crack is analyzed in the plane defined by the hoop and axial directions; the crack starts close to one of the free edges; its axial length is initially large enough so that its tip is far away from that free edge, and the crack expands the entire circumferential perimeter and keeps its concentric position. The developed method provides information for a good design of flywheels. It is concluded that a fracture-based crack propagation criterion generally occurs at a lower speed than a stress-based criterion. Also, that the evolution of failure with thickness using the fracture criterion is exponential, demonstrating that thin flywheels are relatively not sensitive to crack propagation, whereas thick ones are very prone.

Analytical Surge Behaviors in Systems of a Single-stage Axial Flow Compressor and Flow-paths

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2016
  • Behaviors of surges appearing near the stall stagnation boundaries in various fashions in systems of a single-stage compressor and flow-path systems were studied analytically and were tried to put to order. Deep surges, which enclose the stall point in the pressure-mass flow plane, tend to have either near-resonant surge frequencies or subharmonic ones. The subharmonic surge is a multiple-loop one containing, for example, in a (1/2) subharmonic one, a deep surge loop and a mild surge loop, the latter of which does not enclose the stall point, staying only within the stalled zone. Both loops have nearly equal time periods, respectively, resulting in a (1/2) subharmonic surge frequency as a whole. The subharmonic surges are found to appear in a narrow zone neighboring the stall stagnation boundary. In other words, they tend to appear in the final stage of the stall stagnation process. It should be emphasized further that the stall stagnation initiates fundamentally at the situation where a volume-modified reduced resonant-surge frequency becomes coincident with that for the stagnation boundary conditions, where the reduced frequency is defined by the acoustical resonance frequency in the flow-path system, the delivery flow-path length and the compressor tip speed, modified by the sectional area ratio and the effect of the stalling pressure ratio. The real surge frequency turns from the resonant frequency to either near-resonant one or subharmonic one, and finally to stagnation condition, for the large-amplitude conditions, caused by the non-linear self-excitation mechanism of the surge.

A Study on the Stress Concentration at Crack of Membrane Structures (막구조물의 파손단면에서의 응력집중 현상에 관한 연구)

  • Jeon, Jin-Hyung;Jeong, Eul-Seok;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.89-98
    • /
    • 2005
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. Therefore membrane structures arc unstable structures initially. These soft structures need to be introduced initial stresses first because of its initial unstable state, and it happens large deformation phenomenon. To find the structural shape after large deformation caused by initial stiffness introduced, we need the shape analysis considering geometric nonlinearity in structural design procedure. In this study, we investigate into the stress concentration at crack of membrane structures. Therefore, using the nonlinear analysis program that NASS (Nonlinear Analysis for Spatial Structures) perform nonlinear analysis, and stress distribution for creak length investigate for using linear elastic fracture mechanics.

  • PDF

Effect of initial coating crack on the mechanical performance of surface-coated zircaloy cladding

  • Xu, Ze;Liu, Yulan;Wang, Biao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1250-1258
    • /
    • 2021
  • In this paper, the mechanical performance of cracked surface-coated Zircaloy cladding, which has different coating materials, coating thicknesses and initial crack lengths, has been investigated. By analyzing the stress field near the crack tip, the safety zone range of initial crack length has been decided. In order to determine whether the crack can propagate along the radial (r) or axial (z) directions, the energy release rate has been calculated. By comparing the energy release rate with fracture toughness of materials, we can divide the initial crack lengths into three zones: safety zone, discussion zone and danger zone. The results show that Cr is suitable coating material for the cladding with a thin coating while Fe-Cr-Al have a better fracture mechanical performance in the cladding with thick coating. The Si-coated and SiC-coated claddings are suitable for reactors with low power fuel elements. Conclusions in this paper can provide reference and guidance for the cladding design of nuclear fuel elements.

Numerical Study on the Hydrodynamic Performance of a Forward-Sweep Type Inducer for Turbopumps (터보펌프용 전진익형 인듀서의 성능에 대한 수치해석적 연구)

  • Choi, Chang-Ho;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.74-79
    • /
    • 2005
  • Computational studies on the hydrodynamic behavior of the forward-sweep inducers for the rocket-engine turbopump are presented in comparison with the conventional backward- sweep inducers. In the present study, two kinds of forward-sweep inducers are designed and numerically investigated. Forward-sweep inducers have bigger tip solidity compared to backward-sweep inducers even with shorter axial length due to their forward-sweep leading edge profiles. It is shown that back flows at the inlet decreases dramatically for forward- sweep inducers. And the low pressure region at the back flow are also decreased, which is assumed to promote the suction performance of the inducers. It seems that the hub located upstream of the tip at the leading edge induces pre whirl at the inlet blade tip for the backward sweep inducer. And this pre whirl leads to the big back flow.