• Title/Summary/Keyword: Tip Resistance

Search Result 293, Processing Time 0.027 seconds

Geotechnical characteristics and consolidation properties of Tianjin marine clay

  • Lei, Huayang;Feng, Shuangxi;Jiang, Yan
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.125-140
    • /
    • 2018
  • Tianjin, which is located on the west shore of the Bohai Sea, is part of China's Circum-Bohai-Sea Region, where very weak clay is deposited. From the 1970s to the early $21^{st}$ century, Tianjin marine clay deposits have been the subject of numerous geotechnical investigations. Because of these deposits' geological complexity, great depositional thickness, high water content, large void ratio, excessive settlement, and low shear strength, the geotechnical properties of Tianjin marine clay need to be summarized and evaluated based on various in situ and laboratory tests so that Tianjin can safely and economically sustain more infrastructure in the coming decades. In this study, the properties of Tianjin marine clay, especially its consolidation properties, are summarized, evaluated and discussed. The focus is on establishing correlations between the geotechnical property indexes and mechanical parameters of Tianjin marine clay. These correlations include the correlations between the water content and the void ratio, the depth and the undrained shear strength, the liquid limit and the compression index, the tip resistance and the constrained modulus, the plasticity index and the ratio of undrained shear strength and the preconsolidation pressure. In addition, the primary consolidation properties of Tianjin marine clay, such as the intrinsic compression line (ICL), sedimentation compression line (SCL), compression index, $C_c$, coefficient of consolidation, $C_v$, and hydraulic conductivity change index, $C_{kv}$, are evaluated and discussed. A secondary consolidation property, i.e., the secondary compression index, $C_a$, is also investigated, and the results show that the ratio of $C_a/C_c$ for Tianjin marine clay can be used to calculate $C_a$ in secondary consolidation settlement predictions.

Mechanical and Adhesional Manipulation Technique for Micro-assembly under SEM

  • Saito, S.;Takahashi, K.;Onzawa, T.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.19-25
    • /
    • 2002
  • In recent years, techniques for micro-assembly with high repeatability under a scanning electron microscope (SEM) are required to construct highly functional micro-devices. Adhesion phenomenon is more significant for smaller objects, because adhesional force is proportional to size of the objects while gravitational force is proportional to the third power of it. It is also known that adhesional force between micro-objects exposed to Electron Beam irradiation of SEM increases with the elapsed time. Therefore, mechanical manipulation techniques using a needle-shaped tool by adhesional force are often adopted in basic researches where micro-objects are studied. These techniques, however, have not yet achieved the desired repeatability because many of these could not have been supported theoretically. Some techniques even need the process of trial-and-error. Thus, in this paper, mechanical and adhesional micro-manipulation are analyzed theoretically by introducing new physical factors, such as adhesional force and rolling-resistance, into the kinematic system consisting of a sphere, a needle-shaped tool, and a substrate. Through this analysis, they are revealed that how the micro-sphere behavior depends on the given conditions, and that it is possible to cause the fracture of the desired contact Interfaces selectively by controlling the force direction in which the tool-tip loads to the sphere. Based on the acquired knowledge, a mode diagram, which indicates the micro-sphere behavior for the given conditions, is designed. By referring to this mode diagram, the practical technique of the pick and place manipulation of a micro-sphere under an SEM by the selective interface fracture is proposed.

  • PDF

Analysis of the Net Mouth Shape for a Midwater Trawl Gear (중층 트롤 어구의 망구 형상 해석)

  • 김인진;이춘우
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.2
    • /
    • pp.118-128
    • /
    • 1999
  • The shape of the net mouth in a midwater trawl gear is examined by measuring towing speed, gear resistance, the width of otter boards, net height, and so on of a full-scale gear in operation. In addition, a mathematical model is developed to predict shapes of the net mouth. In the model, shapes of head, ground, side ropes, which governs the shape of net mouth, are assumed as a catenary. The validity of the model is tested with observations. The results can be summarized as follows: 1. The warp tension and vertical opening of the gear is highly dependent to the towing speed. The depth of the gear and width of otter boards are very sensitive to the variations of the warp length. 2. The model results indicate that the wing tip of the head and side ropes is reduced and the vertical distances of the head and side ropes sagged to the back with increasing towing speed. 3. The results of comparing the measured net height with calculated side rope height were satisfying. 4. The results of analysis showed the vertical axis of the net mouth was decreased and the width of the net mouth was little changed when the towing speed increased.

  • PDF

Simplified Application of Load Transfer Method (하중전이법의 간편 적용)

  • Lee, Seung-Hyun;Lee, Su-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2403-2407
    • /
    • 2012
  • Finite number of pile elements are considered in load transfer method. And section force and movement of each pile element are computed by considering compatibilities between pile displacement and the load transfer along a pile and between displacement and resistance at the tip of the pile. For the conventional load transfer method, large amount of computations due to iterations are needed. Formulation of finite difference equation from the differential equation which depicts pile behavior under axial loading was accomplished in order to simplify the computation for obtaining pile section forces and displacements. By comparing the results between the simplified computation method and the reported data, there was no difference between the two results.

The Field Application of Miniature Cone Penetration Test System in Korea (소형콘관입시험(Miniature Cone Penetration Test)의 국내현장 적용)

  • Yoon, Sung-Soo;Ji, Wan-Goo;Kim, Jun-Ou;Kim, Rae-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.349-360
    • /
    • 2009
  • The cone penetration test(CPT) has gained its popularity in site characterization indebted by its reliability, speed, economy, and automatic measurement system since its development in the 1930s. The CPT results, commonly consisting of cone tip resistance, sleeve friction, and pore water pressure measurements, allow us to classify soils as well as to reveal their engineering characteristics. The site condition at which the CPT is allowable is often dependent on the capacity of a CPT system. In Korea, it has been considered that the CPT could be appled only to soft soils in most cases because CPT systems available for stiff soils are very rare due to their expensive procurement and maintenance cost. Luoisiana Transportation Research Center(LTRC) has developed and implemented a field-rugged continuous intrusion miniature cone penetration test(CIMCPT) system since the late 1990s. The miniature cone penetrometer has a sectional cone area of $2cm^2$ allowing system capacity reduction compared to the standard $10cm^2$ cone penetrometer. The continuous intrusion mechanism allows fast and economic site investigation. Samsung Engineering & Construction has recently developed and implemented a similar CIMCPT system based on its original version developed in LTRC. The performance of the Samsung CIMCPT system has been investigated by calibration with the standard CPT system at a well-characterized test site in Pusan, Korea. In addition, scale effect between the miniature cone penetrometer and the standard cone penetrometer has been investigated by comparing the field test results using the both systems.

  • PDF

A Study on the Microscopic Fracture Characteristics of A533B-1 Nuclear Pressure Vessel Steels (A533B-1 원자로 압력용기 강의 미시적 파괴특성에 관한 연구)

  • Jang, Chang-Heui;Kim, In-Sup;Park, Soon-Pil
    • Nuclear Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.165-170
    • /
    • 1989
  • The strain rate effects on fracture toughness and fracture resistance characteristics of A533B-1 nuclear pressure vessel steels were examined in the quasi-dynamic test conditions through the microscopic investigation of the intense strain region around crack tip and the microroughness of fracture surface. J-value calculated from the recrystallization etch technique was the same as calculated from the modified-J when the crack extension is less than 1.5mm in a 1/2T-CT specimen. Local fracture strain was calculated from the fracture surface micro-roughness. The local strains were calculated to be the values of 1.8 and 2.0 and were much higher than the macroscopically measured values. It was nearly independent on strain rate and was regarded as a material constant in ductile dimpled rupture. The fracture toughness increased with increase in strain rate while the tearing modulus showed little variation.

  • PDF

Macro and Micro-electrochemical Characteristics on Dissimilar Welding Metal of Double Wall Gas Pipe for Duel Fuel Engine (이중 연료 엔진용 이중벽 가스 배관 이종 용접부의 매크로 및 마이크로 전기화학적 특성)

  • Kim, Seong-Jong;Park, Jae-Cheul;Han, Min-Su;Jang, Seok-Ki
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.331-337
    • /
    • 2010
  • This study compared the macro and micro electrochemical characteristics at the local area of welding metal on dissimilar welding parts for type 304 stainless steel (SS) and type 316L SS. The materials are used for double wall gas pipe of duel fuel engine for a ship. The various potentiodynamic experiments were performed several times in 10% ${H_2C_2O_2}{\cdot}{H_2O}$ solution using macro and micro methods, respectively. The micro electrochemical experiments conducted to resolve at local area on cross-section of dissimilar welding materials by micro-droplet cell device. The micro-droplet cell techniques can be used almost electrochemical experiments to resolve corrosion characteristics of the limited electrode area of the metallic surface between wetted spot of working electrode and tip of sharpened capillary tube. The results of macro electrochemical experiments show that resistance of active dissolution reaction at welding zone was high due to low current density by formation of passivation protection film at passive region. According to the micro electrochemical experiment, the corrosion current density of welding zone and bond zone were relatively high.

Development of silicon based flexible tactile sensor array mounted on flexible PCB (연성회로기판에 실장된 실리콘 기반의 유연 촉각센서 어레이 제작 및 평가)

  • Kim, K.N.;Kim, Y.K.;Lee, K.R.;Cho, W.S.;Lee, D.S.;Cho, N.K.;Kim, W.H.;Park, J.H.;Kim, S.W.;Ju, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.277-283
    • /
    • 2006
  • We presented that fabrication process and characteristics of 3 axes flexible tactile sensor available for normal and shear force fabricated using Si micromachining and packaging technologies. The fabrication processes for 3 axes flexible tactile sensor were classified in the fabrication of sensor chips and their packaging on the flexible PCB. The variation rate of resistance was about 2.1 %/N and 0.5 %/N in applying normal and shear force, respectively. The flexibility of fabricated 3 axes flexible tactile sensor array was good enough to place on the finger-tip.

Fracture Toughness Measurement of the Semiconductor Encapsulant EMC and It's Application to Package (반도체 봉지수지의 파괴 인성치 측정 및 패키지 적용)

  • 김경섭;신영의;장의구
    • Electrical & Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.519-527
    • /
    • 1997
  • The micro crack was occurred where the stress concentrated by the thermal stress which was induced during the cooling period after molding process or by the various reliability tests. In order to estimate the possibility of development from inside micro crack to outside fracture, the fracture toughness of EMC should be measured under the various applicable condition. But study was conducted very rarely for the above area. In order to provide a was to decide the fracture resistance of EMC (Epoxy Molding Compound) of plastic package which is produced by using transfer molding method, measuring fracture is studied. The specimens were made with various EMC material. The diverse combination of test conditions, such as different temperature, temperature /humidity conditions, different filler shapes, and post cure treatment, were tried to examine the effects of environmental condition on the fracture toughness. This study proposed a way which could improve the reliability of LOC(Lead On Chip) type package by comparing the measured $J_{IC}$ of EMC and the calculated J-integral value from FEM(Finite Element Method). The measured $K_{IC}$ value of EMC above glass transition temperature dropped sharply as the temperature increased. The $K_{IC}$ was observed to be higher before the post cure treatment than after the post cure treatment. The change of $J_{IC}$ was significant by time change. J-integral was calculated to have maximum value the angle of the direction of fracture at the lead tip was 0 degree in SOJ package and -30 degree in TSOP package. The results FEM simulation were well agreed with the results of measurement within 5% tolerance. The package crack was proved to be affected more by the structure than by the composing material of package. The structure and the composing material are the variables to reduce the package crack.ack.

  • PDF

Tongue-Lip Adhesion Using an Alveolar Protector Appliance for Management of Pierre Robin Sequence (피에르 로빈 연속증의 치료로써 치조 보호 장치를 이용한 혀-하순 유착술)

  • Lee, Jang-Won;Park, Beyoung-Yun
    • Archives of Plastic Surgery
    • /
    • v.38 no.4
    • /
    • pp.547-551
    • /
    • 2011
  • Purpose: Pierre Robin sequence is a congenital malformation in which micrognathia causes glossoptosis and airway obstruction. If conservative treatment fails, surgical procedures such as tongue-lip adhesion can be performed. However, this procedure remains a subject of debate, with favorable results being countered by reports of complications. To overcome the above limitations, we revised the traditional method of tongue-lip adhesion using an alveolar protector. Methods: Between 1992 and 2011, a total of eight patients were identified with Pierre Robin sequence and were treated with tongue-lip adhesion. Two of these eight tongue-lip adhesion procedures were performed with an alveolar protector. The operative technique for tongue-lip adhesion was similar to that described in other published reports. The alveolar protector was inserted between the ventral surface of the tip of the tongue and the lower labial sulcus. Results: Tongue-lip adhesion failed in two patients because of wound dehiscence. The primary surgical success rate was 66.7%. In the two tongue-lip adhesion procedures performed with the alveolar protector, we observed no postoperative complications. Conclusion: Resistance to traction of the tongue can be encountered with nonunionized symphysis menti, causing loosening of the traction suture through the symphysis menti. This can lead to backward positioning of tongue, resulting in dehiscence of tongue lip adhesion. The alveolar protector is a good adjunct to tongue-lip adhesion because this method avoids postoperative loosening of the traction suture and wound dehiscence. It is a simple and effective auxiliary method that yields functional improvement.