• 제목/요약/키워드: Tip/Hub

검색결과 120건 처리시간 0.02초

풍력 발전기 블레이드에 걸친 3차원 유동장 해석 및 팁 형상 설계 (3-DIMENSIONAL FLOW FIELD ANALYSIS AND TIP SHAPE DESIGN IN A WIND TURBINE BLADE)

  • 정재호;유철;이정상;김기현;최재웅
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.243-248
    • /
    • 2011
  • The 3-dimensional flow field has been investigated by numerical analysis in a 2.5MW wind turbine blade. Complicated and separated flaw phenomena in the wind turbine blade were captured by the Reynolds-averaged Navier-Stokes(RANS) steady flaw simulation using general-purpose code, CFX and the mechanism of vortex structure behavior is elucidated. The vortical flow field in a wind turbine rotor is dominated by the tip vortex and hub separation vortex. The tip vortex starts to be formed near the blade tip leading edge. As the tip vortex develops in the tangential direction, interacting with boundary layer from the blade tip trailing edge. The hub separation vortex is generated near the blade hub leading edge and develops nearly in the span-wise direction. Furthermore, 3-dimensional blade tip shape has been designed for increasing shrift power and reducing thrust force on the wind turbine blade. It is expected that the behavior of the tip vortex and hub separation vortex plays a major role in aerodynamic and aeroacoustic characteristics.

  • PDF

입구 경계층 두께가 축류 압축기 내부 유동에 미치는 영향 (I) - 허브 코너 실속 및 익단 누설 유동 - (Effects of the Inlet Boundary Layer Thickness on the Flow in an Axial Compressor (I) - Hub Corner Stall and Tip Leakage Flow -)

  • 최민석;박준영;백제현
    • 대한기계학회논문집B
    • /
    • 제29권8호
    • /
    • pp.948-955
    • /
    • 2005
  • A three-dimensional computation was conducted to understand effects of the inlet boundary layer thickness on the internal flow in a low-speed axial compressor operating at the design condition($\phi=85\%$) and near stall condition($\phi=65\%$). At the design condition, the flows in the axial compressor show, independent of the inlet boundary layer thickness, similar characteristics such as the pressure distribution, size of the hub comer-stall, tip leakage flow trajectory, limiting streamlines on the blade suction surface, etc. However, as the load is increased, the hub corner-stall grows to make a large separation region at the junction of the hub and suction surface for the inlet condition with thick boundary layers at the hub and casing. Moreover, the tip leakage flow is more vortical than that observed in case of the thin inlet boundary layer and has the critical point where the trajectory of the tip leakage flow is abruptly turned into the downstream. For the inlet condition with thin boundary layers, the hub corner-stall is diminished so it is indistinguishable from the wake. The tip leakage flow leans to the leading edge more than at the design condition but has no critical point. In addition to these, the severe reverse flow, induced by both boundary layer on the blade surface and the tip leakage flow, can be found to act as the blockage of flows near the casing, resulting in heavy loss.

원심형, 사류형, 축류형 펌프단에서 살펴본 이차유동의 수치적 고찰 (Numerical Investigation of Secondary Flow in 3 Pump Stages: Centrifugal Multistage/Mixed-flow Stage/ Axial-flow Stage)

  • 오종식
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.359-364
    • /
    • 2005
  • Centrifugal pump shows the strongest secondary flow. Wake is formed near pressure surface close to hub at impeller exit for centrifugal pump impeller. Pressure gradient drives secondary flow in the inducer region, while in the remaining region the following sources drive together: > Pressure gradient > Coriolis force Low-momentum fluid near suction surface hub moves toward pressure surface hub in mixed-flow pump impeller. Tip leakage vortex dominate secondary flow in axial-flow pump impeller. Tip leakage vortex dominate secondary flow in axial-flow in axial-flow pump impeller

  • PDF

Effects of Hub-to-Tip Ratio and Reynolds Number on the Performance of Impulse Turbine for Wave Energy Power Plant

  • Ajit Thakker;Khaleeq, Hammad-Bin;Manabu Takao;Toshiaki Setoguchi
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1767-1774
    • /
    • 2003
  • The objective of this paper is to present the performance comparison of the impulse turbines for different diameters. In the study, the investigation has been performed experimentally by model testing for some diameters, especially 0.3 m and 0.6 m. The experiment was performed for Reynolds number range of 0.17 ${\times}$ 10$\^$5/ -1.09 ${\times}$ 10$\^$5/ and for different values of hub-to-tip ratio ν ranging from 0.6 to 0.85. As a result, it was found that the critical Reynolds number is to be around 0.5 ${\times}$ 10$\^$5/ for ν=0.6 and 0.4 ${\times}$ 10$\^$5/ for ν=0.7. For the hub-to-tip ratio, the optimum value is 0.7 when the turbine is operated at lower Reynolds number. However, its value seems to be 0.6 at higher Reynolds number in the tested range.

입구 경계층 두께가 축류 압축기 손실에 미치는 영향 (Effects of the Inlet Boundary Layer Thickness on the Loss Mechanism in an Axial Compressor)

  • 최민석;백제현
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.419-426
    • /
    • 2004
  • A three-dimensional computation was conducted to understand effects of the inlet boundary layer thickness on the loss mechanism in a low-speed axial compressor operating at the design condition(${\phi}=85\%$) and near stall condition(${\phi}=65\%$). At the design condition, the flow phenomena such as the tip leakage flow and hub comer stall are similar independent of the inlet boundary layer thickness. However, when the axial compressor is operating at the near stall condition, the large separation on the suction surface near the casing is induced by the tip leakage flow and the boundary layer on the blade for thin inlet boundary layer but the hub corner stall is enlarged for thick inlet boundary layer. These differences of internal flows induced by change of the boundary layer thickness on the casing and hub enable loss distributions of total pressure to be altered. When the axial compressor has thin inlet boundary layer, the total pressure loss is increased at regions near both casing and tip but decreased in the core flow region. In order to analyze effects of inlet boundary layer thickness on total loss in detail, using Denton's loss models, total loss is scrutinized through three major loss categories in a subsonic axial compressor such as profile loss, tip leakage loss and endwall loss.

  • PDF

Numerical Analysis on the Effect of Parameters that Affect the Flow Rate through the Tunnel with Jet Fan Ventilation System

  • Kim, Sa-Ryang;Hur, Nahmkeon;Kim, Young-Il;Kim, Ki-Jung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권4호
    • /
    • pp.178-187
    • /
    • 2003
  • In this study, ventilation flow rate and pressure rise through a tunnel are simulated numerically using computational fluid dynamics (CFD) for various conditions such as roughness height of the surface of tunnel, swirl angle and hub/tip ratio of jet fan, and entrance and exit effects. By using a modified wall function, friction factor can be predicted with respect to the Moody chart within 10% of error for the circular pipe flow and 15% for the present tunnel. For more accurate design, the effect of the swirl angle and hub/tip ratio of jet fan, which is not included in the theoretical equation of pressure rise by jet fan needs to be considered.

배풍기 효율 최적화를 위한 시스템 설계(I) (Design of exhauster system for high efficiency drive(I))

  • 배진환;안진우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.280-281
    • /
    • 2017
  • 본 논문에서는 기존의 배풍기 효율을 높이고 크기를 줄이기 위해 임펠러의 속도를 높이는 설계에 관한 연구다. 임펠러 속도는 5500rpm으로 증가시키고 크기는 320mm에서 250mm로 줄였으며 효율과 최대 풍량을 향상키기기 위해 임펠러의 Hub/Tip 비율을 줄이며, 날개각도에 변화를 주는 방식을 제안한다. Hub/Tip 비율이 줄어들면 유량이 통과하는 면적이 넓어지게 되는 효과를 얻게 되고, 임펠러 중심거리에 따른 날개 각도를 변화시키면 풍압과 풍량이 달라지는 효과를 얻게 되어 동일한 rpm으로 회전하는 배풍기의 효율을 높일 수 있다. 설계된 구동용 SRM과 임펠러의 설계에 따른 운전 특성을 시뮬레이션을 통해 해석하고자 한다.

  • PDF

덕트 로터의 날개끝 보오텍스 캐비테이션 초기발생특성 (Inception of Tip Vortex Cavitation on Ducted Rotors)

  • 김기섭;김경열;안종우;이진태;박의동;채한복;이한성
    • 대한조선학회논문집
    • /
    • 제36권1호
    • /
    • pp.37-46
    • /
    • 1999
  • 덕트 로터 추진장치에서 덕트와 로터 날개끝 사이의 간극변화가 날개끝 보오텍스 캐비테이션 초기발생 특성에 미치는 영향을 실험적으로 연구하였다. 허브 보오텍스 캐비테이션과 날개끝 보오텍스 캐비테이션 초기발생특성의 상관관계를 살펴보기 위해서 추진장치 하류에서 축방향과 원주방향유속을 L.D.V.로 계측하였다. 날개끝 및 허브 보오텍스 캐비테이션 초기발생 관찰결과와 유속분포로부터 해석된 유동변화가 정성적으로 잘 일치하고 있으며, 날개끝 보오텍스 캐비테이션 초기발생 지연을 최대화할 수 있는 최적의 간극량을 도출하였다.

  • PDF

축류 압축기에서의 선회실속에 관한 3차원 수치해석 (A Three-Dimensional Numerical Simulation of Rotating Stall in an Axial Compressor)

  • 최민석;오성환;기덕종;백제현
    • 대한기계학회논문집B
    • /
    • 제31권1호
    • /
    • pp.68-75
    • /
    • 2007
  • A three-dimensional computation is conducted to simulate a three-dimensional rotating stall in a low speed axial compressor. It is generally known that a tip leakage flow has an important role on a stall inception. However, almost of researchers have taken no interest in a role of the hub-comer-stall on the rotating stall even though it is a common feature of the flow in an axial compressor operating near stall and it has a large effect on the flows and loss characteristics. Using a time-accurate unsteady simulation, it is found that the hub-comer-stall may be a trigger to collapse the axisymmetric flows under high loads. An asymmetric disturbance is initially originated in the hub-comer-stall because separations are naturally unstable flow phenomena. Then this disturbance is transferred to the tip leakage flows from the hub-comer-stall and grows to be stationary stall cells, which adheres to blade passage and rotate at the same speed as the rotor. When stationary stall cells reach a critical size, these cells then move along the blade row and become a short-length-scale rotating stall. The rotational speed of stall cells quickly comes down to 79 percent of rotor so they rotate in the opposite direction to the rotor blades in the rotating frame.

입구 경계층 두께가 축류 압축기 내부 유동에 미치는 영향 (II) - 손실구조 - (Effects of the Inlet Boundary Layer Thickness on the Flow in an Axial Compressor(II) - Loss Mechanism -)

  • 최민석;박준영;백제현
    • 대한기계학회논문집B
    • /
    • 제29권8호
    • /
    • pp.956-962
    • /
    • 2005
  • A three-dimensional computation was conducted to make a study about effects of the inlet boundary layer thickness on the total pressure loss in a low-speed axial compressor operating at the design condition ($\phi=85\%$) and near stall condition($\phi=65\%$). Differences of the tip leakage flow and hub corner-stall induced by the inlet boundary layer thickness enable the loss distribution of total pressure along the span to be altered. At design condition, total pressure losses for two different inlet boundary layers are almost alike in the core flow region but the larger loss is generated at both hub and tip when the inlet boundary layer is thin. At the near stall condition, however, total pressure loss fer the thick inlet boundary layer is found to be greater than that for the thin inlet boundary layer on most of the span except the region near hub and casing. Total pressure loss is scrutinized through three major loss categories in a subsonic axial compressor such as profile loss, tip leakage loss and endwall loss using Denton's loss model, and effects of the inlet boundary layer thickness on the loss structure are analyzed in detail.