• Title/Summary/Keyword: Tiny-OS

Search Result 156, Processing Time 0.021 seconds

State Machine Frameworks Operating in Sensor Network Operation System based on Multi-Thread (멀티쓰레드 기반 센서네트워크 운영체제에서 동작하는 상태머신 프레임워크)

  • Lee, Seung-Keun;Kim, Byung-Kon;Choi, Byoung-Kyu;Shin, Heu
    • The KIPS Transactions:PartA
    • /
    • v.17A no.3
    • /
    • pp.127-136
    • /
    • 2010
  • A wireless sensor network(WSN) which roles as a mediator between living environment and computers in ubiquitous computing is very essential research area. Due to the constraint that sensor nodes should work in very resource-restricted circumstances, an operating system that can manage resources effectively is demanded. Also, a sensor network should be able to deal with many events quickly and simultaneously in order to respond to various physical changes in outer environment. The Sensor Network Operating System such as TinyOS, MANTIS and NanoQplus is much designed so that it can satisfy such requirement. But, for programmers who develop application program for sensor networks, they have lack of frameworks which the development is easily possible from restricted development environment. In this paper for this, we implemented a state machine framework apt for responsive systems in NanoQplus which is multi-thread-based sensor network operating system. In addition we propose an event broker module(EBM) for effective event dispatching, a message data structure for message sharing among state machines, and an execution module that handles messages and their queue and performs state transition of the machines. Furthermore, we could do the development more easily an application program with a state-based framework by developing CASE tools.

Design of a Real-time Sensor Node Platform for Efficient Management of Periodic and Aperiodic Tasks (주기 및 비주기 태스크의 효율적인 관리를 위한 실시간 센서 노드 플랫폼의 설계)

  • Kim, Byoung-Hoon;Jung, Kyung-Hoon;Tak, Sung-Woo
    • The KIPS Transactions:PartC
    • /
    • v.14C no.4
    • /
    • pp.371-382
    • /
    • 2007
  • In this paper, we propose a real-time sensor node platform that efficiently manages periodic and aperiodic tasks. Since existing sensor node platforms available in literature focus on minimizing the usage of memory and power consumptions, they are not capable of supporting the management of tasks that need their real-time execution and fast average response time. We first analyze how to structure periodic or aperiodic task decomposition in the TinyOS-based sensor node platform as regard to guaranteeing the deadlines of ail the periodic tasks and aiming to providing aperiodic tasks with average good response time. Then we present the application and efficiency of the proposed real-time sensor node platform in the sensor node equipped with a low-power 8-bit microcontroller, an IEEE802.15.4 compliant 2.4GHz RF transceiver, and several sensors. Extensive experiments show that our sensor node platform yields efficient performance in terms of three significant, objective goals: deadline miss ratio of periodic tasks, average response time of aperiodic tasks, and processor utilization of periodic and aperiodic tasks.

Ubiquitous u-Health System using RFID & ZigBee (RFID와 ZigBee를 이용한 유비쿼터스 u-Health 시스템 구현)

  • Kim Jin-Tai;Kwon Youngmi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.79-88
    • /
    • 2006
  • In this paper, we designed and implemented ubiquitous u-Health system using RFE and ZigBee. We made a wireless protocol Kit which combines RFE Tag recognition and ZigBee data communication capability. The software is designed and developed on the TinyOS. Wireless communication technologies which hold multi-protocol stacks with RFID and result in the wireless ubiquitous world could be Bluetooth, ZigBee, 802.11x WLAN and so on. The environments that the suggested u-Health system may be used is un-manned nursing, which would be utilized in dense sensor networks such as a hospital. The the size of devices with RFID and ZigBee will be so smaller and smaller as a bracelet, a wrist watch and a ring. The combined wireless RFID-ZigBee system could be applied to applications which requires some actions corresponding to the collected (or sensed) information in WBAN(Wireless Body Area Network) and/or WPAN(Wireless Person Area Network). The proposed ubiquitous u-Health system displays some text-type alert message on LCD which is attached to the system or gives voice alert message to the adequate node users. RFE will be used as various combinations with other wireless technologies for some application-specific purposes.

Development of Ubiquitous Sensor Network Intelligent Bridge System (유비쿼터스 센서 네트워크 기반 지능형 교량 시스템 개발)

  • Jo, Byung Wan;Park, Jung Hoon;Yoon, Kwang Won;Kim, Heoun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.120-130
    • /
    • 2012
  • As long span and complex bridges are constructed often recently, safety estimation became a big issue. Various types of measuring instruments are installed in case of long span bridge. New wireless technologies for long span bridges such as sending information through a gateway at the field or sending it through cables by signal processing the sensing data are applied these days. However, The case of occurred accidents related to bridge in the world have been reported that serious accidents occur due to lack of real-time proactive, intelligent action based on recognition accidents. To solve this problem in this study, the idea of "communication among things", which is the basic method of RFID/USN technology, is applied to the bridge monitoring system. A sensor node module for USN based intelligent bridge system in which sensor are utilized on the bridge and communicates interactively to prevent accidents when it captures the alert signals and urgent events, sends RF wireless signal to the nearest traffic signal to block the traffic and prevent massive accidents, is designed and tested by performing TinyOS based middleware design and sensor test free Space trans-receiving distance.

Address-Internetworking Scheme between Wireless Sensor Network and Internet Using TCP Port-Numbers (TCP 포트번호를 이용한 센서 네트워크와 인터넷(IPv4/IPv6)의 주소 연동)

  • Kim, Jeong-Hee;Kwon, Hoon;Kim, Do-Hyeu;Kwak, Ho-Young;Do, Yang-Hoi;Kim, Dae-Young;Byun, Yung-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.114-123
    • /
    • 2007
  • As a promising technology that enables ubiquitous computing and will lead the information technology industries of the next generation, the new field of sensor networks is one of the most active research topics today. From now on, each node, the network formation, and even the sensor network itself will interact with the generic network and evolve dynamically according to environmental changes, in a process of continual creation and extinction. In this paper, we propose a address-Internetworking scheme for interactive networking between a sensor network and the Internet based on the TCP port-numbers. The proposed scheme enables internetworking between a sensor network address scheme based on Zigbee and the Internet address scheme based on the Internet Protocol version 6 (IPv6). We implement the proposed address-Internetworking scheme using Berkeley TinyOS, Mica Motes, and IP. In addition we verify the proposed scheme by an interconnection experiment, which involves wireless sensor networks and the Internet, using IPv4/IPv6.

Experimental Study of Capture Effect for Medium Access Control with ALOHA

  • Kosunalp, Selahattin;Mitchell, Paul D.;Grace, David;Clarke, Tim
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.359-368
    • /
    • 2015
  • In this paper, we investigate the capture effect through experiments conducted with Iris nodes equipped with AT86RF230 radio transceivers. It is shown that the first arriving packet in a collision can capture the radio channel for equal power transmissions and may be decoded depending on the amount of overlap. A new 3-packet-capture scenario is introduced and implemented. To be able to understand the impact of capture on the throughput performance of wireless sensor networks, we present an analysis of the capture coefficient using our practical results. For real-world implementations, the throughput of pure ALOHA considering a finite number of users is presented in analytical form. The capture coefficient is then applied to pure ALOHA as a case study. Using analytical and practical implementations of the capture effect on ALOHA, a very good match in channel throughput performance enhancement is demonstrated over the non-capture effect case. TinyOS-2.x is used to program the nodes and to observe data exchange on a computer through a base station.

A Secure Medical Information Management System for Wireless Body Area Networks

  • Liu, Xiyao;Zhu, Yuesheng;Ge, Yu;Wu, Dajun;Zou, Beiji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.221-237
    • /
    • 2016
  • The wireless body area networks (WBANs) consist of wearable computing devices and can support various healthcare-related applications. There exist two crucial issues when WBANs are utilized for healthcare applications. One is the protection of the sensitive biometric data transmitted over the insecure wireless channels. The other is the design of effective medical management mechanisms. In this paper, a secure medical information management system is proposed and implemented on a TinyOS-based WBAN test bed to simultaneously address these two issues. In this system, the electronic medical record (EMR) is bound to the biometric data with a novel fragile zero-watermarking scheme based on the modified visual secret sharing (MVSS). In this manner, the EMR can be utilized not only for medical management but also for data integrity checking. Additionally, both the biometric data and the EMR are encrypted, and the EMR is further protected by the MVSS. Our analysis and experimental results demonstrate that the proposed system not only protects the confidentialities of both the biometric data and the EMR but also offers reliable patient information authentication, explicit healthcare operation verification and undeniable doctor liability identification for WBANs.

Development of the Activity Posture Classifier for Ubiquitous Health Care (유비쿼터스 헬스케어를 위한 활동상태 분류기 개발)

  • Kim, Se-Jin;Chung, Wan-Young;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.703-706
    • /
    • 2007
  • The real-time monitoring about the activity of the human provides useful information about the activity quantity and an ability. This study developed a system for human physical activity assessment in ambulatory monitoring using portable sensing device combining a tri-axial accelerometer and wireless sensor node. This real-time system is able to identify several postures, posture transitions and movements with classification algorithm. In addition, this system also features fall detection capability. The results of the assessment for evaluating the performance of the system show high identification accuracy.

  • PDF

R-peak Detection Algorithm in Wireless Sensor Node for Ubiquitous Healthcare Application (유비쿼터스 헬스케어 시스템을 위한 노드기반의 R피크 검출 알고리즘)

  • Lee, Dae-Seok;Hwang, Gi-Hyun;Cha, Kyoung-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.227-232
    • /
    • 2011
  • The QRS complex in ECG analysis is possible to obtain much information that is helpful for diagnosing different types of cardiovascular disease. This paper presents the preprocessor method to detect R-peak, RR interval, and HRV in wireless sensor node. The derivative of the electrocardiogram is efficiency of preprocessing method for resource hungry wireless sensor node with low computation. We have implemented R-peak and RR interval detection application based on dECG for wireless sensor node. The sensor node only transfers meaning parameter of ECG. Thus, implementation of sensor node can save power, reduce traffic, and eliminate congestion in a WSN.

Networked Control System Using RTT Measurement over USN (RTT 측정을 이용하는 USN 기반 Networked Control System)

  • Yi, Hyun-Chul;Kim, Yu-Jong;Choi, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.11
    • /
    • pp.1040-1044
    • /
    • 2012
  • We design a NCS (Networked Control System) where the communication between sensors and controllers takes place over a USN (Ubiquitous Sensor Network). In order to measure time delays between sensors and controllers in real time, we design an algorithm to measure RTT (Round Trip Time) between USN nodes, and implement it into TinyOS of USN. By using the measured time delays, we construct the Smith predictor to compensate the time delays between sensors and controllers in real-time. For the real time experiment, we simulate the dynamic plant model, controller, and USN interface using Real-Time Windows Target provided in MATLAB. The USN interface in the Simulink model consists of serial ports, which connect the plant output and controller with USN nodes. The experiment results show that the time delays between sensors and controllers are precisely measured in real time; the Smith predictor appropriately compensates the time delays; and the stability is achieved in the closed-loop of the NCS.