• 제목/요약/키워드: Timoshenko curved beams

검색결과 13건 처리시간 0.024초

Out-of-plane Free Vibration Analysis of Curved Timoshenko Beams by the Pseudospectral Method

  • Lee, Jinhee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권2호
    • /
    • pp.53-59
    • /
    • 2004
  • The pseudospectral method is applied to the analysis of out-of$.$plane free vibration of circularly curved Timoshenko beams. The analysis is based on the Chebyshev polynomials and the basis functions are chosen to satisfy the boundary conditions. Natural frequencies are calculated for curved beams of circular cross sections under hinged-hinged, clamped-clamped and hinged-clamped end conditions. The present method gives good accuracy with only a limited number of collocation points.

In-Plane Free Vibration Analysis of Curved Timoshenko Beams by the Pseudospectral Method

  • Lee, Jinhee
    • Journal of Mechanical Science and Technology
    • /
    • 제17권8호
    • /
    • pp.1156-1163
    • /
    • 2003
  • The pseudospectral method is applied to the analysis of in-plane free vibration of circularly curved Timoshenko beams. The analysis is based on the Chebyshev polynomials and the basis functions are chosen to satisfy the boundary conditions. Natural frequencies are calculated for curved beams of rectangular and circular cross sections under hinged-hinged, clamped-clamped and hinged-clamped end conditions and the results are compared with those by transfer matrix method. The present method gives good accuracy with only a limited number of collocation points.

Dynamic response of curved Timoshenko beams resting on viscoelastic foundation

  • Calim, Faruk Firat
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.761-774
    • /
    • 2016
  • Curved beams' dynamic behavior on viscoelastic foundation is the subject of the current paper. By rewritten the Timoshenko beams theory formulation for the curved and twisted spatial rods, governing equations are obtained for the circular beams on viscoelastic foundation. Using the complementary functions method (CFM), in Laplace domain, an ordinary differential equation is solved and then those results are transformed to real space by Durbin's algorithm. Verification of the proposed method is illustrated by solving an example by variating foundation parameters.

Isogeometric method based in-plane and out-of-plane free vibration analysis for Timoshenko curved beams

  • Liu, Hongliang;Zhu, Xuefeng;Yang, Dixiong
    • Structural Engineering and Mechanics
    • /
    • 제59권3호
    • /
    • pp.503-526
    • /
    • 2016
  • In-plane and out-of-plane free vibration analysis of Timoshenko curved beams is addressed based on the isogeometric method, and an effective scheme to avoid numerical locking in both of the two patterns is proposed in this paper. The isogeometric computational model takes into account the effects of shear deformation, rotary inertia and axis extensibility of curved beams, and is applicable for uniform circular beams, and more complicated variable curvature and cross-section beams as illustrated by numerical examples. Meanwhile, it is shown that, the $C^{p-1}$-continuous NURBS elements remarkably have higher accuracy than the finite elements with the same number of degrees of freedom. Nevertheless, for in-plane or out-of-plane vibration analysis of Timoshenko curved beams, the NURBS-based isogeometric method also exhibits locking effect to some extent. To eliminate numerical locking, the selective reduced one-point integration and $\bar{B}$ projection element based on stiffness ratio is devised to achieve locking free analysis for in-plane and out-of-plane models, respectively. The suggested integral schemes for moderately slender models obtain accurate results in both dominated and non-dominated regions of locking effect. Moreover, this strategy is effective for beam structures with different slenderness. Finally, the influence factors of structural parameters of curved beams on their natural frequency are scrutinized.

탄성스프링으로 지지된 곡선형 Timoshenko 보의 면내 자유진동 (In-Plane Vibrations of Curved Timoshenko Beams with Elastic Springs at Both Ends)

  • 오상진;모정만;강희종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.105-110
    • /
    • 2007
  • The differential equations governing free, in-plane vibrations of circular curved beams with elastic springs at beth ends, including the effects of axial deformation, rotatory inertia and shear defamation. are solved numerically using the corresponding boundary conditions. The lowest three natural frequencies are calculated over a wide range of non-dimensional system parameters, the radial, tangential and rotational spring parameters, the subtended angle, the slenderness ratio and the shear parameter.

  • PDF

원호형 곡선보의 면외 자유진동에 관한 수치해석적 연구 (Out of Plane Free Vibrations of Circular Curved Beams)

  • 이병구;오상진
    • 전산구조공학
    • /
    • 제9권1호
    • /
    • pp.133-139
    • /
    • 1996
  • 이 논문은 원호형 곡선보의 면외 자유진동에 관한 연구이다. 곡선보 요소의 동적 평형방정식에 Timoshenko 이론을 적용하여 원호형 곡선보의 자유진동을 지배하는 상미분방정식을 유도하고 이를 수치해석하여 고유진동수를 산출할 수 있는 개략해법 중 하나인 수치해석기법을 개발하였다. 수치해석기법에서 미분방정식의 수치적분은 Runge-Kutta method를 이용하였고, 고유진동수의 결정은 Regular-Falsi method를 이용하였다. 실제 수치해석예에서는 회전-회전보, 고정-고정보에 대하여 시행하고 고유진동수에 미치는 무차원 변수들의 영향을 고찰하였다.

  • PDF

Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment

  • Ebrahimi, Farzad;Daman, Mohsen
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.121-133
    • /
    • 2017
  • This paper proposes an analytical solution method for free vibration of curved functionally graded (FG) nonlocal beam supposed to different thermal loadings, by considering porosity distribution via nonlocal elasticity theory for the first time. Material properties of curved FG beam are assumed to be temperature-dependent. Thermo-mechanical properties of porous FG curved beam are supposed to vary through the thickness direction of beam and are assumed to be temperature-dependent. Since variation of pores along the thickness direction influences the mechanical and physical properties, porosity play a key role in the mechanical response of curved FG structures. The rule of power-law is modified to consider influence of porosity according to even distribution. The governing equations of curved FG porous nanobeam under temperature field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is used to achieve the natural frequencies of porous FG curved nanobeam supposed to thermal loadings with simply supported boundary condition. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality, porosity volume fractions, type of temperature rising, gradient index, opening angle and aspect ratio of curved FG porous nanobeam on the natural frequency are successfully discussed. It is concluded that these parameters play key roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

On resonance behavior of porous FG curved nanobeams

  • She, Gui-Lin;Liu, Hai-Bo;Karami, Behrouz
    • Steel and Composite Structures
    • /
    • 제36권2호
    • /
    • pp.179-186
    • /
    • 2020
  • In this paper, the forced resonance vibration of porous functionally graded (FG) curved nanobeam is examined. In order to capture the hardening and softening mechanisms of nanostructure, the nonlocal strain gradient theory is employed to build the size-dependent model. Using the Timoshenko beam theory together with the Hamilton principle, the equations of motion for the curved nanobeam are derived. Then, Navier series are used in order to obtain the dynamical deflections of the porous FG curved nanobeam with simply-supported ends. It is found that the resonance position of the nanobeam is very sensitive to the nonlocal and strain gradient parameters, material variation, porosity coefficient, as well as geometrical conditions. The results indicate that the resonance position is postponed by increasing the strain gradient parameter, while the nonlocal parameter has the opposite effect on the results. Furthermore, increasing the opening angle or length-to-thickness ratio will result in resonance position moves to lower-load frequency.

Thermo-mechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory

  • Ebrahimi, Farzad;Daman, Mohsen;Mahesh, Vinyas
    • Advances in nano research
    • /
    • 제7권4호
    • /
    • pp.249-263
    • /
    • 2019
  • In the current paper, an exact solution method is carried out for analyzing the thermo-mechanical vibration of curved FG nano-beams subjected to uniform thermal environmental conditions, by considering porosity distribution via nonlocal strain gradient beam theory for the first time. Nonlocal strain gradient elasticity theory is adopted to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field is considered. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Material properties of curved porous FG nanobeam are assumed to be temperature-dependent and are supposed to vary through the thickness direction of beam which modeled via modified power-law rule. Since variation of pores along the thickness direction influences the mechanical and physical properties, porosity play a key role in the mechanical response of curved FG nano-structures. The governing equations and related boundary condition of curved porous FG nanobeam under temperature field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved nanobeam supposed to thermal loading. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, porosity volume fractions, thermal effect, gradient index, opening angle and aspect ratio on the natural frequency of curved FG porous nanobeam are successfully discussed. It is concluded that these parameters play key roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

Vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in thermal environment

  • Ebrahimi, Farzad;Farazmandnia, Navid
    • Advances in aircraft and spacecraft science
    • /
    • 제5권1호
    • /
    • pp.107-128
    • /
    • 2018
  • Thermo-mechanical vibration of sandwich beams with a stiff core and face sheets made of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) is investigated within the framework of Timoshenko beam theory. The material properties of FG-CNTRC are supposed to vary continuously in the thickness direction and are estimated through the rule of mixture and are considered to be temperature dependent. The governing equations and boundary conditions are derived by using Hamilton's principle and are solved using an efficient semi-analytical technique of the differential transform method (DTM). Comparison between the results of the present work and those available in literature shows the accuracy of this method. A parametric study is conducted to study the effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, and various boundary conditions on free vibration behavior of sandwich beams with FG-CNTRC face sheets. It is explicitly shown that the vibration characteristics of the curved nanosize beams are significantly influenced by the surface density effects.