• Title/Summary/Keyword: Timoshenko Beams

Search Result 179, Processing Time 0.018 seconds

Spectral Element Modeling of an Extended Timoshenko Beam Based on the Force-Displacement Relations (힘-변위 관계를 이용한 확장된 티모센코 보에 대한 스펙트럴 요소 모델링)

  • Lee, Chang-Ho;Lee, U-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.45-48
    • /
    • 2008
  • Periodic lattice structures such as the large space lattice structures and carbon nanotubes may take the extension-transverse shear-bending coupled vibrations, which can be well represented by the extended Timoshenko beam theory. In this paper, the spectrally formulated finite element model (simply, spectral element model) has been developed for extended Timoshenko beams and applied to some typical periodic lattice structures such as the armchair carbon nanotube, the periodic plane truss, and the periodic space lattice beam.

  • PDF

Comparative dynamic analysis of axially loaded beams on modified Vlasov foundation

  • Hizal, Caglayan;Catal, Hikmet Huseyin
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.969-988
    • /
    • 2016
  • Vibration analysis of the beams on elastic foundation has gained the great interest of many researchers. In the literature, there are many studies that focus on the free vibration analysis of the beams on one or two parameter elastic foundations. On the other hand, there are no sufficient studies especially focus on the comparison of dynamic response including the bending moment and shear force of the beams resting on Winkler and two parameter foundations. In this study, dynamic response of the axially loaded Timoshenko beams resting on modified Vlasov type elastic soil was investigated by using the separation of variables method. Governing equations were obtained by assuming that the material had linear elastic behaviour and mass of the beam was distributed along its length. Numerical analysis were provided and presented in figures to find out the differences between the modified Vlasov model and conventional Winkler type foundation. Furthermore, the effect of shear deformation of elastic soil on the dynamic response of the beam was investigated.

Nondestructive damage evaluation of deep beams

  • Dincal, Selcuk;Stubbs, Norris
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.3
    • /
    • pp.269-299
    • /
    • 2017
  • This paper presents a Level III damage evaluation methodology, which simultaneously, identifies the location, the extent, and the severity of stiffness damage in deep beams. Deep beams are structural elements with relatively high aspect (depth-to-length) ratios whose response are no longer based on the simplified Euler-Bernoulli theory. The proposed methodology is developed on the bases of the force-displacement relations of the Timoshenko beam theory and the concept of invariant stress resultants, which states that the net internal force existing at any cross-section of the beam is not affected by the inflicted damage, provided that the external loadings in the undamaged and damaged beams are identical. Irrespective of the aspect ratios, local changes in both the flexural and the shear stiffnesses of beam-type structures may be detected using the approach presented in this paper.

Study on Detection of Crack and Damage for Cantilever Beams Using Vibration Characteristics (진동특성을 이용한 외팔보의 크랙 및 손상 검출에 대한 연구)

  • Son, In-Soo;Ahn, Sung-Jin;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.935-942
    • /
    • 2009
  • In this paper, the purpose is to investigate the natural frequency of a cracked Timoshenko cantilever beams by FEM(finite element method) and experiment. In addition, a method for detection of crack in a cantilever beams is presented based on natural frequency measurements. The governing differential equations of a Timoshenko beam are derived via Hamilton's principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The detection method of a crack location in a beam based on the frequency measurements is extended here to Timoshenko beams, taking the effects of both the shear deformation and the rotational inertia into account. The differences between the actual and predicted crack positions and sizes are less than 6 % and 23 % respectively.

Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.343-371
    • /
    • 2016
  • In this paper thermo-mechanical vibration analysis of a porous functionally graded (FG) Timoshenko beam in thermal environment with various boundary conditions are performed by employing a semi analytical differential transform method (DTM) and presenting a Navier type solution method for the first time. The temperature-dependent material properties of FG beam are supposed to vary through thickness direction of the constituents according to the power-law distribution which is modified to approximate the material properties with the porosity phases. Also the porous material properties vary through the thickness of the beam with even and uneven distribution. Two types of thermal loadings, namely, uniform and linear temperature rises through thickness direction are considered. Derivation of equations is based on the Timoshenko beam theory in order to consider the effect of both shear deformation and rotary inertia. Hamilton's principle is applied to obtain the governing differential equation of motion and boundary conditions. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of several parameters such as porosity distributions, porosity volume fraction, thermal effect, boundary conditions and power-low exponent on the natural frequencies of the FG beams in detail. It is explicitly shown that the vibration behavior of porous FG beams is significantly influenced by these effects. Numerical results are presented to serve benchmarks for future analyses of FG beams with porosity phases.

On the static stability of nonlocal nanobeams using higher-order beam theories

  • Eltaher, M.A.;Khater, M.E.;Park, S.;Abdel-Rahman, E.;Yavuz, M.
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.51-64
    • /
    • 2016
  • This paper investigates the effects of thermal load and shear force on the buckling of nanobeams. Higher-order shear deformation beam theories are implemented and their predictions of the critical buckling load and post-buckled configurations are compared to those of Euler-Bernoulli and Timoshenko beam theories. The nonlocal Eringen elasticity model is adopted to account a size-dependence at the nano-scale. Analytical closed form solutions for critical buckling loads and post-buckling configurations are derived for proposed beam theories. This would be helpful for those who work in the mechanical analysis of nanobeams especially experimentalists working in the field. Results show that thermal load has a more significant impact on the buckling behavior of simply-supported beams (S-S) than it has on clamped-clamped (C-C) beams. However, the nonlocal effect has more impact on C-C beams that it does on S-S beams. Moreover, it was found that the predictions obtained from Timoshenko beam theory are identical to those obtained using all higher-order shear deformation theories, suggesting that Timoshenko beam theory is sufficient to analyze buckling in nanobeams.

Flapwise Bending Vibration of Rotating Timoshenko Beams with Concentrated Mass Moment of Inertia (집중 질량 및 관성모멘트를 갖는 회전하는 티모센코 보의 면외굽힘 진동)

  • 박정훈;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.110-115
    • /
    • 1997
  • A modeling method for the bending vibration analysis of rotating Timoshenko beams with concentrated mass and mass moment of inertia is presented. The shear and rotary inertia effects become critical for the accurate estimation of the natural frequencies and modeshapes as the slenderness ratio decreases. The effect of the concentrated mass and mass moment of inertia on the natural frequencies are also investigated with the modeling method.

  • PDF

Effective Analysis of Beams Using the RKPM (RKPM을 이용한 보의 효과적 해석 방안)

  • 송태한;석병호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.73-79
    • /
    • 2003
  • In this paper, RKPM is extended for solving moderately thick and thin beams. General Timoshenko beam theory is used for formulation. Shear locking is the main difficulty in analysis of these kinds of structures. Shear relaxation factor, which is formulated using the difference between bending and shear strain energy, and corrected shear rigidity are introduced to overcome shear locking. Analysis results obtained reveal that RKPM using introduced methods is free of locking and very effectively applicable to deep beams as well as shallow beams.

Vibration of elastically supported bidirectional functionally graded sandwich Timoshenko beams on an elastic foundation

  • Wei-Ren Chen;Liu-Ho Chiu;Chien-Hung Lin
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.197-209
    • /
    • 2024
  • The vibration of elastically supported bidirectional functionally graded (BDFG) sandwich beams on an elastic foundation is investigated. The sandwich structure is composed of upper and lower layers of BDFG material and the core layer of isotropic material. Material properties of upper and lower layers are assumed to vary continuously along the length and thickness of the beam with a power-law function. Hamilton's principle is used to deduce the vibration equations of motion of the sandwich Timoshenko beam. Then, the partial differential equation of motion is spatially discretized into a time-varying ordinary differential equation in terms of Chebyshev differential matrices. The eigenvalue equation associated with the free vibration is formulated to study the influence of various slenderness ratios, material gradient indexes, thickness ratios, foundation and support spring constants on the vibration frequency of BDFG sandwich beams. The present method can provide researchers with deep insight into the impact of various geometric, material, foundation and support parameters on the vibration behavior of BDFG sandwich beam structures.