• Title/Summary/Keyword: Timing recovery loop

Search Result 23, Processing Time 0.029 seconds

Design of a Timing Recovery Loop for Inmarsat Mini-m System Downlink Receiver (Inmarsat Mini-m 시스템의 하향 링크 수신기를 위한 Timing Recovery 루프 설계)

  • Cho, Byung-Chang;Han, Jung-Su;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.685-692
    • /
    • 2008
  • In this paper, we propose a timing recovery loop for Inmarsat mini-m system downlink receiver. Inmarsat mini-m system requires a timing recovery loop which is robust in frequency offset and has fast acquisition because Inmarsat mini-m system specification requires frequency tolerance is required of ${\pm}924$ Hz (signal bandwidth: 2.4 kHz) and acquisition time of UW (Unique Word) signal duration (15ms).Therefore, we propose a timing recovery loop which is suitable for Inmarsat mini-m system. The proposed timing recovery loop adopted noncoherent UW detector and differential ELD which applied differential UW signal for stability and fast acquisition in frequency offset environment. Simulation results show that the proposed timing recovery loop has stable operation and fast acquisition in frequency offset environment for the system.

A Timing Recovery Scheme for Variable Symbol Rate Digital M-ary QASK Receiver (가변 심볼율 MQASK(M-ary Quadrature Amplitude Keying) 디지털 수신기를 위한 타이밍 복원 방안)

  • Baek, Daesung;Lim, Wongyu;Kim, Chong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.7
    • /
    • pp.545-551
    • /
    • 2013
  • Timing recovery loop composed of the Timing Error Detector(TED), loop filter and resampler is widely used for the timing synchronization in MQASK receivers. Since TED is sensitive to the delay between the symbol period of the signal and sampling period, the output is averaged out when the symbol rate and sampling rate are quite different the recovery loop cannot work at all. This paper presents a sampling frequency discriminator (SRD), which detects the frequency offset of the sampling clock to the symbol clock of the MQASK data transmitted. Employing the SRD, the closed loop timing recovery scheme performs the frequency-aided timing acquisition and achieve the synchronization at extremely high sampling frequency offset, which can be used in variable symbol rate MQASK receivers.

The Optimization of Timing Recovery Loop for an MQASK All Digital Receivers (MQASK 디지털 수신기 타이밍 복원 루프 구조의 최적화 연구)

  • Seo, Kwang-Nam;Kim, Chong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.40-44
    • /
    • 2010
  • The timing error detector(TED) employed in the closed loop type timing synchronization scheme for an MQASK all digital receiver suffers from the selfnoise-induced timing jitter. To eliminate the timing jitter a prefilter can be added in front of the TED. The prefilter method, however, degrades the stability and timing acquisition performance due to the loop delay and increases the complexity of the synchronizer. This paper proposes a polyphase filter type resampler approach to optimize the performance and architecture of the synchronizer simultaneously. The proposed scheme uses two resamplers which performs matched filtering and matched prefiltering so that the loop delay is minimized with minimal hardware resources. Simulation results showed an excellent acquisition performance with reduced timing jitter.

An adaptive clock recovery utilizing data buffer filling rate (수신 데이타의 버퍼 점유률을 이용한 적응클럭 복원)

  • 이종형;김태균
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.3
    • /
    • pp.47-54
    • /
    • 1996
  • In this paper we propose a new timing recovery method by means of utilizing service data filling rate instead of timing information of transmitter. A proposed algorithm controls the phase locked loop in the opposite direction ot data filling rate of FIFO in receiver, and it is based on the fact that average of cell jitters is zero. The proposed method is simple compared with timing information method of transmitter. It can be utilized for timing recovery in synchronous digital hierarchy as well as in plesiochronous digial hierarchy without common reference clocks in end-to-end erminals. We implement the interactive video communication system and test the proposed algorithm. As a result, we hav econfirmed that it yields good perfomrnces in terms of jitters characteristics and hardware complexity.

  • PDF

A Symbol Timing Recovery scheme using the jitter mean of adaptive loop filter in ATSC DTV systems (적응적 루프필터의 지터 평균값을 이용한 ATSC DTV 심볼 타이밍 동기 방식)

  • Kim, Joo-Kyoung;Lee, Joo-hyoung;Song, Hyun-keun;Kim, Jae-Moung;Kim, Seung-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.10 s.340
    • /
    • pp.1-8
    • /
    • 2005
  • This Paper Proposes the algorithm for improving the Performance or symbol timing synchronization in hoc terrestrial DTV system. The Gardner algerian is used for symbol timing synchronization has good performance in multipath fading environment but degradation of performance is caused by jitter. Though the amount of jitter becomes more little as narrow bandwidth of loop Inter, convergence speed becomes slower. This paper propose the algorithm that averages out values of loop filter every certain time and gradually reduces the bandwidth of loop filter after estimating offset using this average for the high speed of convergence and reducing the met of jitter. The proposed algorithm has better performance with high speed of convergence and the amount of jitter than conventional method.

Implementation of QPSK Demodulator for IMT-2000 System (IMT-2000 시스템을 위한 QPSK 복조기 구현)

  • 김상명;김상훈;황원철;정지원
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.226-230
    • /
    • 2000
  • In this paper, we implemented the QPSK demodulator with a CPLD chip, and examined the results. DD(Decision Directed)-Gardner algorithm is used for STR loop and Decision-Directed algorithm is used for CPR loop. The speed of the QPSK demodulator implemented in FLEX10K chip can be guaranteed approximately 2[Mbpsl] transmission speed. In practical designed by ASIC, the speed is faster than that of CPLD by 5-6 times.

  • PDF

Chip Timing Recovery Algorithm Robust to Frequency Offset and Time Variant Fading

  • Kang, Hyung-Wook;Lee, Young-Yong;Park, Hyung-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1948-1951
    • /
    • 2002
  • In this paper, we propose a chip timing recovery algorithm that is robust to frequency offset and time variant fading environments for DS/CDMA. The proposed structure is a modified non-coherent Delay Locked Loop (DLL) that employs a decimator. Analytical expression for the proposed non-coherent DLL S-curve and steady-state timing jitter is derived and confirmed by computer simulation. The results show that the proposed structure can reduce a steady-state timing jitter of the regenerated spreading code replica to frequency offset and time-variant fading in mobile radio channel, especially in very low SNR.

  • PDF

Burst Mode Symbol Timing Recovery for VDL Mode-2 (VDL Mode-2에 적용 가능한 버스트 모드 심벌 타이밍 복원기)

  • Gim, Jong-Man;Choi, Seung-Duk;Eun, Chang-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.337-343
    • /
    • 2009
  • In this paper, we proposed a burst mode symbol timing recovery unit that is applicable to the VDL Mode-2 using D8PSK modulation. A method that IIR loop filter is used to minimize symbol timing error is hard to apply to burst mode because its convergence time is long. That is, the fast convergence property is important. In this paper, the proposed method takes one sample which has maximum symbol power after the initial synchronization has been achieved by using preambles. The main principle of operation is that the unit moves one sample clock to advance or retard according to symbol power. We verify that the proposed method is operated well in ${\pm}100$ ppm or greater through the test results between Australia ADS Corp. transmitter and the designed receiver.

  • PDF

A Study on the DPLL Implementation using the WDM Phase Detector (WDM 방식을 이용한 DPLL 구현에 관한 연구)

  • Lee, Sang-Mok;Jeong, Jae-Hoon;Choi, Sang-Tai;Han, Il-Song
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.950-953
    • /
    • 1987
  • A wave difference method(WDH) phase detector for timing recovery is designed in the digital subscriber loop receiver. This paper describes the architecture and experimental results of the WDM, tankless timing extraction PLL. The results show that the designed WDM timing extraction circuit have stable jitter performance without the use of high precision LC tank circuit.

  • PDF

A Phase Recovery and Amplitude Compensation Scheme for QPSK All Digital Receiver Using CORDIC Algorithm (CORDIC 알고리즘을 이용한 QPSK 디지털 수신기의 위상 복원 및 진폭보상방안)

  • Seo, Kwang-Nam;Kim, Chong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.1029-1034
    • /
    • 2010
  • For All Digital QPSK receivers, a phase recovery scheme is required to fix the arbitrarily rotated I/Q quadrature signals due to the transmission path and clock mismatch between the transmitter and the receiver. The conventional Costas phase recovery loop scheme requires a separate AGC(Automatic Gain Control) to obtain the performance independent of input signal power. This paper proposes a simple scheme which separates the phase and amplitude of the input signal via CORDIC algorithm and performs the phase recovery and amplitude compensation simultaneously. The proposed scheme can considerably reduce the logic resources in hardware implementation, has been verified by C++ and Model Sim simulations.