동아시아 지역에 있는 8개 IGS GPS상시관측소의 관측자료를 이용하여 한반도 주변의 지각운동 속도를 재고 그 결과를 분석하였다. 이를 위해 1995년 5월부터 1997년 12월까지 약 32개월간의 7일 간격 GPS자료를 Bernese 4.0으로 처리하여 하루에 한번씩 대전을 기준한 각 지점의 좌표를 측정하였다. 측정된 좌표의 시간에 따른 선형회기분석을 통해 각 지점의 성분별 연간 지각운동 속도를 결정하였다. 그 결과, 총 32개월 데이터를 사용한 4지점(쓰구바, 우수다, 타이완, 상하이)에 대해서는 1 mm/year 이하의 표준오차로 평면성분의 연간 지각운동 속도를 결정할 수 있었다. 이 연구로 측정된 유라시아판 안쪽에 위치한 5지점의 속도는 각 지점마다 약간의 차이가 있으나 대전에 대해 1 cm/year 이하의 상대 속도를 보인 반면, 일본의 2지점의 속도는 유라시아판 내부의 6지점들과 전혀 다른 경향을 나타냈다. 이것은 두 지점이 태평양판, 유라시아판, 북아메리카판, 필리핀판의 경계부에 놓여 있어 이들 4판의 상호작용을 받기 때문이라 판단된다. 한국과 일본이 매년 약 3cm씩 접근하고 있다는 사실을 이 연구를 통해 확인할 수 있었다.
With the advance of civilization and steadily increasing population rivalry and competition for the use of the sewage, culverts, farm irrigation and control of various types of flood discharge have developed and will be come more and more keen in the future. The author has tried to calculated a formula that could adjust these conflicts and bring about proper solutions for many problems arising in connection with these conditions. The purpose of this study is to find out effective sewage, culvert, drainage, farm irrigation, flood discharge and other engineering needs in the Taegu area. If demands expand further a new formula will have to be calculated. For the above the author estimated methods of control for the probable expected rainfall using a formula based on data collected over a long period of time. The formula is determined on the basis of the maximum daily rainfall data from 1921 to 1971 in the Taegu area. 1. Iwai methods shows a highly significant correlation among the variations of Hazen, Thomas, Gumbel methods and logarithmic normal distribution. 2. This study obtained the following major formula: ${\log}(x-2.6)=0.241{\xi}+1.92049{\cdots}{\cdots}$(I.M) by using the relation $F(x)=\frac{1}{\sqrt{\pi}}{\int}_{-{\infty}}^{\xi}e^{-{\xi}^2}d{\xi}$. ${\xi}=a{\log}_{10}\(\frac{x+b}{x_0+b}\)$ ($-b<x<{\infty}$) ${\log}(x_0+b)=2.0448$$\frac{1}{a}=\sqrt{\frac{2N}{N-1}}S_x=0.1954$. $b=\frac{1}{m}\sum\limits_{i=1}^{m}b_s=-2.6$$S_x=\sqrt{\frac{1}{N}\sum\limits^N_{i=1}\{{\log}(x_i+b)\}^2-\{{\log}(x_0+b)\}^2}=0.169$ This formule may be advantageously applicable to the estimation of flood discharge, sewage, culverts and drainage in the Taegu area. Notation for general terms has been denoted by the following. Other notations for general terms was used as needed. $W_{(x)}$ : probability of occurranec, $W_{(x)}=\int_{x}^{\infty}f_{(n)}dx$$S_{(x)}$ : probability of noneoccurrance. $S_{(x)}=\int_{-\infty}^{x}f_(x)dx=1-W_{(x)}$ T : Return period $T=\frac{1}{nW_{(x)}}$ or $T=\frac{1}{nS_{(x)}}$$W_n$ : Hazen plot $W_n=\frac{2n-1}{2N}$$F_n=1-W_x=1-\(\frac{2n-1}{2N}\)$ n : Number of observation (annual maximum series) P : Probability $P=\frac{N!}{{t!}(N-t)}F{_i}^{N-t}(1-F_i)^t$$F_n$ : Thomas plot $F_n=\(1-\frac{n}{N+1}\)$ N : Total number of sample size $X_l$ : $X_s$ : maximum, minumum value of total number of sample size.
어군탐지기를 이용하여 어군의 분포와 그 행동생태를 계측하기 위한 연구의 일환으로 어군의 연직적인 일주회유이동 및 초음파산란강도의 변동특성을 검토하고, 또한 수온의 연직구조와 어군의 연직분포특성과의 관계, 선박의 항주상태에 따른 어군의 행동반응 등을 현장실험을 통하여 검토, 고찰한 결과를 요약하면 다음과 같다. (1) 어군의 공간분포특성은 수온의 연직구조와 밀접한 관계가 있음을 알 수 있었다. (2) 동중국해 중앙부에서 일출 직전까지 수온약층 바로 아래쪽에 군집하고 있던 칼오징어와 전갱이 어군이 일출과 더불어 해저를 향해 급속히 하강하는 일주회유이동이 관찰되었고, 그 하강속도는 0.24m/min이었다. (3) 수온약층이 탁월했던 제주도 서방해역과 대만 북부해역을 대상으로 어군의 연직분포특성과 수온의 연직구조와를 상호 비교 분석한 결과, 표층과 저층의 수온차가 크고, 또 중층에 뚜렷한 수온약층이 형성되어 있는 경우, 전갱이와 칼오징어군은 야간에 수온약층의 바로 아래쪽에 농밀하게 군집하는 특성을 나타내고, 또 표층과 저층의 수온차가 적은 경우에 있어서는 표층까지 완전히 부상하여 군집하는 경향을 나타내었다. (4) 선박을 정선시킬 때, 선저 직하에 분포하는 어족생물이 급히 연직적으로 하향 이동하는 도피행동을 나타내었다. 그러나, 그 후 시간이 경과함에 따라서 다시 원래의 유영층으로 상향이동하는 행동패턴을 나타내었다. 한편, 수온약층을 경계로 하여 상층과 하층에 분포하는 어족생물의 행동패턴에도 차이가 있었는데, 수온약층 아래쪽에 있어서는 어군이 현저한 도피행동을 나타내었지만, 그 위쪽에 있어서는 그러한 징후가 관찰되지 않았다. 이와 같은 현상은 수온약층 아래쪽에는 유영성이 강한 어족생물이, 그 위쪽에는 유영성이 약한 어족생물이 군집하고 있었기 때문이라고 판단된다. 당시 이 해역에서 행한 저층 트롤의 주요 어획물은 물메기, 살오징어, 삼치 등이었다.
최근 전력 사용량의 증가로 인한 대규모 블랙아웃 등 에너지 문제가 대두되고 있으며, 이 문제들로 인해 전력 소비량 예측에 대한 정확도를 개선할 필요성이 부각되었다. 본 연구에서는 딥 러닝 기반의 전력 사용량 예측 실험을 통해서 실제 전력 소비량과 예측된 전력 소비량의 차이를 계산하고, 이를 통해서 전력 예비율을 기존 대비 하향 조정할 수 있는 가능성에 대해서 살펴본다. 예비 전력은 사용하지 않으면 손실되는 전력으로, 본 논문에서의 딥 러닝 기반 전력 소비량 예측을 통해서 여분의 전력을 과도하게 생산하지 않도록 오차범위 내에서 전력 예비율을 감소시킬 수 있는 기반을 마련할 수 있다. 본 논문에서 사용하는 딥 러닝 기법은 시계열 데이터를 처리하는 Long-Short-Term-Memory(LSTM) 구조의 학습 모델을 이용한다. 컴퓨터 시뮬레이션에서는 임의 생성한 전력 소비 데이터를 토대로 모델을 학습시키고, 학습된 모델을 토대로 전력 사용 예측값을 구하고 실제 전력 소비량 간에 오차를 계산한 결과 오차율 21.37%를 얻을 수 있었다. 이는 최근의 전력 예비율 45.9%를 고려할 때, 본 연구에서 제안한 전력 소비량 예측 알고리즘을 적용하는 경우 20% 포인트 정도의 예비율 감축이 가능하다.
지식경영 분야의 P2P금융 플랫폼의 성장속에서 빅데이터 및 머신러닝(Machine Learning) 기술을 보유한 회사만이 치열한 경쟁 속에서 생존할 가능성이 높을 것으로 예상된다. 그럼에도 불구하고 관련 서비스를 제공하는 온라인 P2P대출 플랫폼 업체들은 투자자와 대출을 신청하는 중개자로서의 역할을 수행할 뿐이며 투자와 관련된 위험은 모두 투자자에게 귀속시키고 있다. 이러한 이유로, 투자자 입장에서는 투자상품의 안전성을 확인할 수 있는 유일한 방법이 신문이나 온라인 웹사이트를 통한 P2P대출 플랫폼 업체의 평판에만 의존할 수 밖에 없는 실정이다. 또한, 한국의 P2P대출 플랫폼 업체들이 대출자의 개별 신용분석을 체계적으로 실시하여 연체율 등의 시계열 정보를 정확히 파악하기에는 시간적, 경제적 여건이 매우 열악한 상황이다. 그러나, 최근 몇몇 P2P대출 플랫폼 업체들이 업체별 대출자 신용분석에 대한 역량을 가장 중요한 영업자산으로 인식함으로써 빅데이터 및 머신러닝 기술을 바탕으로 인공지능(AI)에 기반한 새로운 신용평가 시스템을 구축하고 시행에 들어가고 있음은 매우 긍정적으로 평가된다. 따라서, 본 연구에서는 신용대출 시장에 주력하고 있으며 인공지능 활용으로 잘 알려진 상위 3개 업체를 대상으로 사례분석 방식을 통해 인공지능을 활용한 대출자 신용분석 절차 및 사용하는 정보 데이터의 종류 등을 분석하고자 한다. 이를 통하여 현 상황에서 P2P 플랫폼 업체들의 인공지능을 통한 신용분석 기법을 이해하고 현 시점에서 국내 인공지능을 활용한 신용분석 방식의 한계점과 개선방안 등을 함께 고찰하고자 한다.
해양환경의 시공간적 분포 패턴을 정량적으로 분석하기 위해 남해 광양만 해양환경 관측 자료를 이용하여 글로벌 및 국지적 공간자기상관 통계를 적용하였다. 연구지역 전체의 해양환경 분포 패턴을 이해하기 위해 Moran's I, General G와 같은 글로벌 공간자기상관 지수를 사용하였으며, 대상 피쳐(feature)와 이웃 피쳐들과의 유사성 정도를 측정하고 hot spot 및 cold spot을 탐지하기 위해 국지적 Moran's I ($I_i$), $G_i{^*}$와 같은 LISA(local indicators of spatial association)를 사용하였고, 공간 군집 패턴의 신뢰성은 Z-score를 통한 통계적 유의성 검증을 수행하였다. 공간 통계 결과를 통해 년 중 해양환경 공간분포 패턴의 변화를 정량적으로 알 수 있었는데, 일반 해양수질, 영양염, 클로로필 및 식물플랑크톤은 여름철에 강한 군집 패턴을 보였다. 글로벌 지수에서 강한 군집 패턴을 보였을 때 속성 값의 공간적인 변화가 심한 음적 $I_i$ 값을 가지는 전선지역이 탐지되었다. 또한, 글로벌 지수에서 임의적 패턴을 보였을 때 국지적 지수인 $G_i{^*}$에서는 좁은 지역에서 hot spot과(또는) cold spot이 탐지되었다. 따라서 글로벌 지수는 연구 지역 전체 군집 패턴의 강도와 시계열적 변화 과정 탐지에, 국지적 지수를 통해서는 hot spot과 cold spot 위치 추적에 유용함을 알 수 있었다. 해양환경 공간분포 패턴과 군집 특성을 정량화는 것은 해양환경을 보다 깊이 이해할 수 있도록 할 뿐 아니라, 패턴의 원인을 찾는데도 중요한 역할을 할 것이다.
SqueeSAR 분석기법은 SAR 영상내에 있는 고정산란체(PS)와 분산산란체(DS)를 모두 이용하는 새로운 기법이다. 비록 도심지역에는 많은 PS가 존재하지만, SqueeSAR 기법은 관측밀도를 높이는데 기여할 수 있다. 차분간섭도 제작에 필요한 DEM 정확도에 의한 변위분석 결과의 영향을 분석하기 위해 SRTM 1-arc (~30 m)와 1 m LIDAR DEM을 사용한 분석을 수행하였다. 두개의 고도자료를 이용하여 PSInSAR와 SqueeSAR 분석을 수행한 결과 인공구조물과 같은 PS에서는 자료처리에 사용된 DEM 오차를 거의 정확하게 보정할 수 있기 때문에, 사용된 DEM의 정확도와 상관없이 최종 시계열 분석 결과는 동일하였다. 반면, 고정산란체가 아닌 Distributed Scatterer (DS)일 경우 사용된 DEM의 정확도에 따라 영향을 받게 되며, SqueeSAR의 경우 사용된 DEM이 정확할수록 분석 결과가 좋아짐을 확인하였다. 도심지역에서의 변위 관측에서도 SqueeSAR 기법이 PSInSAR 기법에 비해 약 5배 이상의 관측점을 추출하는데 기여했으며, 관측점의 오차도 PSInSAR 결과에 비해 현저하게 개선되었다.
본 연구에서는 농업용 저수지에서 저수량 예측모형과 함께 저수지의 목표저수량 및 한계저수량을 유지하기 위한 저수지 운영방안을 제시하였다. 대상저수지인 금강저수지에서 1990년부터 200l년까지의 저수량 자료를 이용하여 갈수빈도해석을 적용하고, 2년빈도 한발저수량을 목표저수량(target storage)으로, 10년빈도 한발저수량을 한계저수량(critical storage)으로 설정하였다. 농업용 저수지의 운영의 효율화를 위해서는 우선 합리적인 방법을 통하여 장래 저수량을 예측하여야 한다. 예측된 저수량은 저수지 운영에 관한 계획을 수립하는데 기초자료로 활용될 수 있다. 본 연구에는 저수량 예측모형으로 ARIMA 모형과 자기회귀오차모형을 적용하였다. ARIMA 모형은 과거 저수량 자료만을 근거로 하여 저수량을 예측함으로서 예측정도가 상대적으로 낮은 것으로 나타난 반면, 자기회귀오차모형은 저수량과 관련 있는 설명변수들을 이용함으로써 예측의 효과를 높일 수 있었다. 농업용 저수지의 저수량은 이전 저수량, 강수량, 평균온도, 최고온도, 관개면적, 풍속, 습도의 영향을 받으므로 자기회귀오차모형을 적용하여 저수량과 저수량에 영향을 미치는 요인과의 관계를 분석하였다. 자기회귀오차모형에 의한 저수량 예측 관계식은 저수지의 연속방정식과 유사한 관계식으로 유도되어 실제 적용성이 높을 것으로 판단되며, 금광저수지에서 예측된 2002년도 저수량과 관측된 저수량을 비교한 결과, 양호한 예측결과를 보여 주었다.
본 연구에서는 가뭄해석을 위한 이변량 결합가뭄지수를 산정하고 국내 활용성을 평가하였다. 이변량 결합가뭄지수 산정을 위해 결합분포함수는 Clayton copula, 매개변수 추정은 교정방법을 이용하였으며, 입력변수로는 1977~2012년 동안의 강수량 및 토양수분량 자료를 선정하였다. 우리나라에 대한 이변량 결합가뭄지수를 산정한 후, 기존 가뭄지수인 SPI 및 SSI와 같이 시계열 분석, 지역별 분석 및 ROC 분석을 수행하여 활용성을 평가하였다. 분석결과 SPI는 가뭄의 시작, SSI는 가뭄의 해갈을 적절히 고려하였으며, 이변량 결합가뭄지수는 SPI 및 SSI의 거동 특성을 적절히 반영하는 것으로 나타났다. 또한 이변량 결합가뭄지수가 SPI 및 SSI에 비해 ROC score가 높게 산정되었으며, 지역별 분석에서도 지역의 가뭄 상황을 적절히 재현하여 활용성이 우수하게 나타났다. 이변량 결합가뭄지수는 기존 가뭄지수의 해석적 한계를 보완하였다는 측면에서 국내 가뭄해석의 활용성이 높다고 판단된다.
최근 기후변화에 따른 기상변동성 증가로 기존 한반도의 기상패턴과 다른 이상강우 현상이 증가하고 있다. 이상강우현상에 따른 수문패턴의 변화는 수자원 계획을 수립하는데 있어 불확실성을 가중시키기고 있다. 이러한 점에서 수문 시계열의 변화양상을 효과적으로 인지할 수 있으며, 유역단위에서 일관된 변화를 평가할 수 있는 변동점 분석 개발이 필요하다. 이에 본 연구에서는 기존 변동점 분석방법에 계층적 베이지안(Hierarchical Bayesian) 기법을 연계하여 유역단위에서 계층적 변동점 분석이 가능한 모형을 개발하였다. 우리나라에 40년 이상 관측된 기상청 강수자료를 활용하여 연강수량 자료를 구축하였으며, 본 연구를 통해 개발된 모형의 적합성을 평가하였다. 분석결과, 1990년대의 강수자료의 변화 양상을 정량적으로 확인할 수 있었으며, 과거에 비해 강수의 증가 특성을 확인할 수 있었다. 최종적으로 추정된 수문자료의 변화시점 전후의 재해석자료를 이용하여 한반도 주변의 강수량과 해수면기압의 Anomaly를 분석해본 결과 변동점을 기준으로 강수량과 해수면기압의 명확한 차이를 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.