DOI QR코드

DOI QR Code

Estimation and Assessment of Bivariate Joint Drought Index based on Copula Functions

Copula 함수 기반의 이변량 결합가뭄지수 산정 및 평가

  • So, Jae Min (Dept. of Civil and Environmental Engrg., Sejong Univ.) ;
  • Sohn, Kyung Hwan (Dept. of Civil and Environmental Engrg., Sejong Univ.) ;
  • Bae, Deg Hyo (Dept. of Civil and Environmental Engrg., Sejong Univ.)
  • 소재민 (세종대학교 물자원연구소, 건설환경공학과) ;
  • 손경환 (세종대학교 물자원연구소, 건설환경공학과) ;
  • 배덕효 (세종대학교 물자원연구소, 건설환경공학과)
  • Received : 2013.11.14
  • Accepted : 2014.01.07
  • Published : 2014.02.28

Abstract

The objective of this study is to evaluate the utilization of bivariate joint drought index in South Korea. In order to develop the bivariate joint drought index, in this study, Clayton copula was used to estimate the joint distribution function and the calibration method was employed for parameter estimation. Precipitation and soil moisture data were selected as input data of bivariate joint drought index for period of 1977~2012. The time series analysis, ROC (Receiver Operating Characteristic) analysis, spatial analysis were used to evaluate the bivariate joint drought index with SPI (Standardized Precipitation Index) and SSI (Standardized Soil moisture Index). As a result, SPI performed better for drought onset and SSI for drought demise. On the other hand the bivariate joint drought index captured both drought onset and demise very well. The ROC score of bivariate joint drought index was higher than that of SPI and SSI, and it also reflected the local drought situations. The bivariate joint drought index overcomes the limitations of existing drought indices and is useful for drought analysis.

본 연구에서는 가뭄해석을 위한 이변량 결합가뭄지수를 산정하고 국내 활용성을 평가하였다. 이변량 결합가뭄지수 산정을 위해 결합분포함수는 Clayton copula, 매개변수 추정은 교정방법을 이용하였으며, 입력변수로는 1977~2012년 동안의 강수량 및 토양수분량 자료를 선정하였다. 우리나라에 대한 이변량 결합가뭄지수를 산정한 후, 기존 가뭄지수인 SPI 및 SSI와 같이 시계열 분석, 지역별 분석 및 ROC 분석을 수행하여 활용성을 평가하였다. 분석결과 SPI는 가뭄의 시작, SSI는 가뭄의 해갈을 적절히 고려하였으며, 이변량 결합가뭄지수는 SPI 및 SSI의 거동 특성을 적절히 반영하는 것으로 나타났다. 또한 이변량 결합가뭄지수가 SPI 및 SSI에 비해 ROC score가 높게 산정되었으며, 지역별 분석에서도 지역의 가뭄 상황을 적절히 재현하여 활용성이 우수하게 나타났다. 이변량 결합가뭄지수는 기존 가뭄지수의 해석적 한계를 보완하였다는 측면에서 국내 가뭄해석의 활용성이 높다고 판단된다.

Keywords

References

  1. Abromowitz, M., and Stegun, I.A. (1964). Handbook of Mathematical Function. U.S. Dept. of Commerce, National Bureau of Standards, Applied Mathematics Series, No. 55.
  2. AghaKouchak, A., Bardossy, A., and Habib, E. (2010). "Conditional simulation of remotely sensed rainfall data using a non-Gaussian v-transformed copula." Advances in Water Resources, Vol. 33, No. 6, pp. 624-634. https://doi.org/10.1016/j.advwatres.2010.02.010
  3. Bae, D.H., and Son, K.H. (2012). "Status and future direction of drought prediction in Korea." Magazine of Korea Water Resources Association, Vol. 45, No. 5, pp. 46-54.
  4. Bae, D.H., Son, K.H., Ahn, J.B., Hong, J.Y., Kim, G.S., Chung, J.S., Jung, U.S., and Kim, J.H. (2011). "Development of real-time drought monitoring and prediction system on Korea & East Asia region." Atmosphere. Korean Meteorological Society, Vol. 22, No. 2, pp. 267-277. https://doi.org/10.14191/Atmos.2012.22.2.267
  5. Bae, D.H., Son, K.H., and Kim, H.E. (2013). "Derivation & evaluation of drought threshold level considering hydro-meteorological data on South Korea." Journal of Korea Water Resources Association, KWRA, Vol. 46, No. 3, pp. 287-299. https://doi.org/10.3741/JKWRA.2013.46.3.287
  6. Bardossy, A. (2006). "Copula-based geostatistical models for groundwater quality parameters."Water Resources Research, Vol. 42, No. 11, W11416.
  7. Barnes, S. (1964). "A technique for maximizing details in numerical map analysis." Journal ofApplied Meteorology, Vol. 3, No. 4, pp. 395-409.
  8. Cherubini, U., Luciano, E., and Vecchiato, W. (2004). Copula Methods in Finance. The Wiley Finance Series, John Wiley & Sons, Ltd.
  9. Favre, A.C., Adlouni, S.E., Perreault, L., Thiemonge, N., and Bobee, B. (2004). "Multivariate hydrological frequency analysis using copulas." Water Resources Research, Vol. 40, No. 1, W01101.
  10. Hao, Z., and AghaKouchak, A. (2013). "Multivariate standardized drought Index: A parametric multi-index model." Advances in Water Resources, Vol. 57, pp. 12-18. https://doi.org/10.1016/j.advwatres.2013.03.009
  11. Keyantash, J., and Dracup, J.A. (2002). "The quantification of drought: An evaluation of drought indices." American Meteorological Society, Vol. 83, No. 8, pp. 1167-1180. https://doi.org/10.1175/1520-0477(2002)083<1191:TQODAE>2.3.CO;2
  12. Keyantash, J.A. (2004). "An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage." Water Resources Research, Vol. 40, No. 9, W09304.
  13. Kim, G.S., and Lee, J.W. (2011). "Evaluation of drought indices using the drought records." Journal of Korean Water Resources Association, KWRA, Vol. 44, No. 8, pp. 639-652. https://doi.org/10.3741/JKWRA.2011.44.8.639
  14. Kim, S.D., Ryu, J.S., Oh, K.R., and Jeong, S.M. (2012). "An application of copulas-based joint drought index for determining comprehensive drought conditions." Journal of Korean Society of Hazard Mitigation, KOSHAM, Vol. 12, No. 1, pp. 223-230. https://doi.org/10.9798/KOSHAM.2012.12.1.223
  15. Korea Meteorological Administration (KMA) (2012). Development of Hydro-meteorological EarlyWarning System for Response to Climate Change.
  16. Kwak, J.W., Kim, D.G., Noh, H.S., Vijay, P., Singh, and Kim, H.S. (2013a). "Case Study: Hydrological Drought Analysis on Namhan River Basin, Korea-(1) Derivation of Joint Probability Distribution." Journal of Hydrologic Engineering, Accepted
  17. Kwak, J.W., Lee, S.D., Kim, Y.S., and Kim, H.S. (2013b). "Return period estimation of droughts using drought variables from standardized precipitation index." Journal of Korea Water Resources Association, KWRA, Vol. 46, No. 8, pp. 795-805. (in Korean) https://doi.org/10.3741/JKWRA.2013.46.8.795
  18. Liang, X., Lettenmaier, D.P., Wood, E.F., Burges, S.J. (1994). "A simple hydrologically based model of land surface water and energy fluxes for general circulation models." Journal of Geophysical Research, Vol. 99, No. D7, pp. 14415-14428 https://doi.org/10.1029/94JD00483
  19. Mckee, T.B., Doesken, N.J., and Kleist, J. (1993). "The relationship of drought frequency and duration to time scales." 8th Conference on Applied Climatology. 17-22 January, Anaheim, California.
  20. National Drought Mitigation Center (NDMC) (2002). Three Years and Counting: What's New with the Drought Monitor.
  21. National Emergency Management Agency (NEMA) (2013). Establishment of National Drought Disaster Information System.
  22. Palmer, W.C. (1965). Meteorological Drought, Research paper. No. 45, U.S. Weather Bureau.
  23. Schweizer, B., and Sklar, A. (1983). Probabilistic Metric Spaces. North-Holland, New York
  24. Serinaldi, F., Bonaccorso, B., Cancelliere, A., and Grimaldi, S. (2009). "Probabilistic characterization of drought properties through copulas." Physics and Chemistry of the Earth, Vol. 34, No. 10-12, pp. 596-605. https://doi.org/10.1016/j.pce.2008.09.004
  25. Sheffield, J., and Wood, E.F. (2008). "Global trends and variability in soil moisture and drought characteristics, 1950-2000, from observation-driven simulations of the terrestrial hydrologic cycle." Journal of Climate, Vol. 21, No. 3, pp. 432-458. https://doi.org/10.1175/2007JCLI1822.1
  26. Shiau, J.T. (2006). "Fitting drought duration and severity with two-dimensional copulas." Water Resources Management, Vol. 20, No. 5, pp. 795-815. https://doi.org/10.1007/s11269-005-9008-9
  27. Shiau, J.T., Feng, S., and Nadarajah, S. (2007). "Assessment of hydrological droughts for the Yellow River, China, using copulas." Hydrological Processes, Vol. 21, No. 16, pp. 2157-2163. https://doi.org/10.1002/hyp.6400
  28. Shukla, S., and Wood, A.W. (2008). "Use of a standardized runoff index for characterizing hydrologic drought." Geophysical Research Letters, doi:10.1029/2007GL032487
  29. Sklar, K. (1959). "Fontions de reprartition a n dimensions et leurs marges." Publ. Inst. Statist. Univ. Paris 8, pp. 11.
  30. Son, K.H., Bae, D.H., and Chung, J.S. (2011). "Drought analysis and assessment by using land surface model on South Korea." Journal of Korean Water Resources Association, KWRA, Vol. 44, No. 8, pp. 667-681. https://doi.org/10.3741/JKWRA.2011.44.8.667
  31. Yoo, J.Y., Shin, J.Y., Kim, D.H., and Kim, T.W. (2013). "Drought risk analysis using stochastic rainfall generation model and copula functions." Journal of Korean Water Resources Association, KWRA, Vol. 46, No. 4, pp. 425-437. https://doi.org/10.3741/JKWRA.2013.46.4.425

Cited by

  1. Development and Assessment of Drought Damage Estimation Technique using Drought Characteristic Factors vol.15, pp.2, 2015, https://doi.org/10.9798/KOSHAM.2015.15.2.93
  2. Analyzing the drought event in 2015 through statistical drought frequency analysis vol.49, pp.3, 2016, https://doi.org/10.3741/JKWRA.2016.49.3.177
  3. Estimation and assessment of natural drought index using principal component analysis vol.49, pp.6, 2016, https://doi.org/10.3741/JKWRA.2016.49.6.565
  4. Projection of Temporal Trends on Drought Characteristics using the Standardized Precipitation Evapotranspiration Index (SPEI) in South Korea vol.57, pp.1, 2015, https://doi.org/10.5389/KSAE.2015.57.1.037
  5. Construction & Evaluation of GloSea5-Based Hydrological Drought Outlook System vol.25, pp.2, 2015, https://doi.org/10.14191/Atmos.2015.25.2.271
  6. Assessment of the Impact of Climate Change on Drought Characteristics in the Hwanghae Plain, North Korea Using Time Series SPI and SPEI: 1981–2100 vol.9, pp.8, 2017, https://doi.org/10.3390/w9080579
  7. Analysis of Drought Intensity and Trends Using the Modified SPEI in South Korea from 1981 to 2010 vol.10, pp.3, 2018, https://doi.org/10.3390/w10030327