• 제목/요약/키워드: TimeSeries Data

검색결과 3,692건 처리시간 0.026초

2차 마르코프 사슬 모델을 이용한 시계열 인공 풍속 자료의 생성 (Generation of Synthetic Time Series Wind Speed Data using Second-Order Markov Chain Model)

  • 유기완
    • 풍력에너지저널
    • /
    • 제14권1호
    • /
    • pp.37-43
    • /
    • 2023
  • In this study, synthetic time series wind data was generated numerically using a second-order Markov chain. One year of wind data in 2020 measured by the AWS on Wido Island was used to investigate the statistics for measured wind data. Both the transition probability matrix and the cumulative transition probability matrix for annual hourly mean wind speed were obtained through statistical analysis. Probability density distribution along the wind speed and autocorrelation according to time were compared with the first- and the second-order Markov chains with various lengths of time series wind data. Probability density distributions for measured wind data and synthetic wind data using the first- and the second-order Markov chains were also compared to each other. For the case of the second-order Markov chain, some improvement of the autocorrelation was verified. It turns out that the autocorrelation converges to zero according to increasing the wind speed when the data size is sufficiently large. The generation of artificial wind data is expected to be useful as input data for virtual digital twin wind turbines.

Test for the Presence of Seasonality in Time Series Models

  • 이성덕
    • Journal of the Korean Data and Information Science Society
    • /
    • 제12권1호
    • /
    • pp.71-78
    • /
    • 2001
  • Three test statistics are proposed for the presence of seasonality in multiplicative seasonal time series models. Further their common limiting distribution is derived under some assumptions.

  • PDF

Data anomaly detection for structural health monitoring of bridges using shapelet transform

  • Arul, Monica;Kareem, Ahsan
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.93-103
    • /
    • 2022
  • With the wider availability of sensor technology through easily affordable sensor devices, several Structural Health Monitoring (SHM) systems are deployed to monitor vital civil infrastructure. The continuous monitoring provides valuable information about the health of the structure that can help provide a decision support system for retrofits and other structural modifications. However, when the sensors are exposed to harsh environmental conditions, the data measured by the SHM systems tend to be affected by multiple anomalies caused by faulty or broken sensors. Given a deluge of high-dimensional data collected continuously over time, research into using machine learning methods to detect anomalies are a topic of great interest to the SHM community. This paper contributes to this effort by proposing a relatively new time series representation named "Shapelet Transform" in combination with a Random Forest classifier to autonomously identify anomalies in SHM data. The shapelet transform is a unique time series representation based solely on the shape of the time series data. Considering the individual characteristics unique to every anomaly, the application of this transform yields a new shape-based feature representation that can be combined with any standard machine learning algorithm to detect anomalous data with no manual intervention. For the present study, the anomaly detection framework consists of three steps: identifying unique shapes from anomalous data, using these shapes to transform the SHM data into a local-shape space and training machine learning algorithms on this transformed data to identify anomalies. The efficacy of this method is demonstrated by the identification of anomalies in acceleration data from an SHM system installed on a long-span bridge in China. The results show that multiple data anomalies in SHM data can be automatically detected with high accuracy using the proposed method.

Parameter Estimation and Comparison for SRGMs and ARIMA Model in Software Failure Data

  • Song, Kwang Yoon;Chang, In Hong;Lee, Dong Su
    • 통합자연과학논문집
    • /
    • 제7권3호
    • /
    • pp.193-199
    • /
    • 2014
  • As the requirement on the quality of the system has increased, the reliability is very important part in terms of enhance stability and to provide high quality services to customers. Many statistical models have been developed in the past years for the estimation of software reliability. We consider the functions for NHPP software reliability model and time series model in software failure data. We estimate parameters for the proposed models from three data sets. The values of SSE and MSE is presented from three data sets. We compare the predicted number of faults with the actual three data sets using the NHPP software reliability model and time series model.

Forecasting of Stream Qualities in Gumho River by Exponential Smoothing at Gumho2 Measurement Point using Monthly Time Series Data

  • Song, Phil-Jun;Lee, Bo-Ra;Kim, Jin-Yong;Kim, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권3호
    • /
    • pp.609-617
    • /
    • 2007
  • The goal of this study is to forecast the trend of stream quality and to suggest some policy alternatives in Gumbo river. It used the five different monthly time series data such as BOD, COD, T-N and EC of the nine of Gumbo River measurement points from Jan. 1998 to Dec. 2006. Water pollution is serious at Gumbo2 and Palgeo stream measurement points. BOD, COD, T-N and EC data are analyzed with the exponential smoothing model and the trend is forecasted until Dec. 2009.

  • PDF

CRM을 위한 은닉 마코프 모델과 유사도 검색을 사용한 시계열 데이터 예측 (Time-Series Data Prediction using Hidden Markov Model and Similarity Search for CRM)

  • 조영희;전진호;이계성
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권5호
    • /
    • pp.19-28
    • /
    • 2009
  • 시계열의 예측에 대한 문제는 오랫동안 많은 연구자들의 연구의 대상이었으며 예측을 위한 많은 방법이 제안되었다. 본 논문에서는 은닉 마코프 모델(Hidden Markov Model)과 우도(likelihood)를 사용한 유사도 검색을 통하여 향후 시계열 데이터의 운행 방향을 예측하는 방법을 제안한다. 이전에 기록된 시계열 데이터에서 질의 시퀸스(sequence)와 유사한 부분을 검색하고 유사 부분의 서브 시퀸스를 사용하여 시계열을 예측하는 방법이다. 먼저 주어진 질의 시퀸스에 대한 은닉 마코프 모델을 작성한다. 그리고 시계열 데이터에서 순차적으로 일정 길이의 서브 시퀸스를 추출하고 추출된 서브 시퀸스와 작성된 은닉 마코프 모델과의 우도를 계산한다. 시계열 데이터로부터 추출된 서브 시퀸스 중에서 우도가 가장 높은 시퀸스를 유사 시퀸스로 결정하고 결정된 부분 이후의 값을 추출하여 질의 시퀸스 이후의 예측 값을 추정한다. 실험 결과 예측 값과 실제 값이 상당한 유사성을 나타내었다. 제안된 방법의 유효성은 코스피(KOSPI) 종합주가지수를 대상으로 실험하여 검증한다.

시계열 적용기간에 따른 사망력 추정 및 예측결과 비교 - LC모형과 LC 코호트효과 확장모형을 중심으로 - (Comparison of Mortality Estimate and Prediction by the Period of Time Series Data Used)

  • 정규남;백지선;김동욱
    • 응용통계연구
    • /
    • 제26권6호
    • /
    • pp.1019-1032
    • /
    • 2013
  • 최근 급격한 기대수명의 증가에 따라 미래 복지정책 등에 커다란 영향을 주는 장래 사망력의 정확한 예측은 중요한 이슈가 되고 있다. 사망력의 정확한 예측을 위하여 최적의 추정모형의 선택도 중요하지만 사망력에 대한 시계열 적용기간도 매우 중요한 이슈다. 이는 우리나라의 사망률 시계열이 짧고, 특히 1982년 이전 자료가 다소 불완전해서 이에 대한 고려가 필수적이기 때문이다. 본 논문에서는 우리나라 사망력 시계열을 기간에 따라 2개의 그룹(1976~2005년, 1983~2005년)으로 나누어서, 남녀별로 LC모형과 LC 코호트효과 확장모형에 대한 모수 추정값, 사망력지수와 코호트지수의 모형화 및 예측, 장래 기대수명의 예측 적합력을 각각 분석한 후 향후에 장래 기대수명 추계시 고려할 시사점을 제시하고자 한다.

시계열 데이터의 프라이버시 보호 클러스터링에서 노이즈 평준화 효과 (Noise Averaging Effect on Privacy-Preserving Clustering of Time-Series Data)

  • 문양세;김혜숙
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권3호
    • /
    • pp.356-360
    • /
    • 2010
  • 최근, 개인 데이터의 프라이버시 보호에 대한 문제가 대두됨에 따라 대용량 데이터를 대상으로 하는 데이터 마이닝 분야에서도 프라이버시 보호 문제에 대한 활발한 연구가 진행되고 있다. 데이터 마이닝에서의 프라이버시 보호 문제는 정보제공자에 의해 제공된 정보 중 민감한 개인 정보의 노출이 없이도 가능한 정확한 마이닝 결과를 얻는 것이다. 데이터 마이닝의 프라이버시 보호 기법에서는 데이터의 보호뿐만 아니라 결과의 정확도 또한 중요한 요인이다. 이에 따라, 본 논문에서는 시계열 데이터 클러스터링을 기반으로 랜덤 데이터 교란 기법에서 결과의 정확도를 높이는 기법으로 노이즈 평준화 개념을 제시한다. 기존의 랜덤 데이터 교란 기법은 데이터의 프라이버시는 잘 보호하지만 시계열간의 거리-순서가 보존되지 않아 결과의 정확도가 크게 떨어지는 문제점을 가진다. 이를 위해, 본 논문에서는 PAA를 기반으로 하는 노이즈 평준화 개념을 제시하고, 구체적인 예를 통해, 제안한 노이즈 평준화 개념이 랜덤 데이터 교란 기법에서 클러스터링 결과의 정확도를 높일 수 있음을 체계적으로 설명한다.

다중 유사 시계열 모델링 방법을 통한 예측정확도 개선에 관한 연구 (A Study on Improving Prediction Accuracy by Modeling Multiple Similar Time Series)

  • 조영희;이계성
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.137-143
    • /
    • 2010
  • 본 연구에서는 시계열 자료처리를 통해 예측정확도를 개선시키는 방안에 대해 연구하였다. 단일 예측 모형의 단점을 개선하기 위해 유사한 시계열 자료를 선정하여 이들로부터 모델을 유도하였다. 이 모델로부터 유효 규칙을 생성해내 향후 자료의 변화를 예측하였다. 실험을 통해 예측정확도에 있어 유의한 수준의 개선효과가 있었음을 확인하였다. 예측모델 구성을 위해 고정구간과 가변구간을 두고 모델링하여 고정구간, 창이동, 누적구간 방식으로 구분하여 예측정확도를 측정하였다. 이중 누적구간 방식이 가장 정확도가 높게 나왔다.

조건부 포아송 및 음이항 분포를 이용한 영-과잉 INGARCH 자료 분석 (Zero-Inflated INGARCH Using Conditional Poisson and Negative Binomial: Data Application)

  • 윤재은;황선영
    • 응용통계연구
    • /
    • 제28권3호
    • /
    • pp.583-592
    • /
    • 2015
  • 영-과잉(zero-inflation) 현상은 최근 계수(count) 시계열 분석의 주요토픽으로 다루어지고 있다. 본 논문에서는 영-과잉 계수 시계열의 변동성을 연구하고 있다. 기존의 정수형 모형인 INGARCH(integer valued GRACH) 모형에 조건부 포아송 및 조건부 음이항 분포를 사용하여 변동성에 영-과잉 현상을 추가하였다. 모수 추정 방법으로 EM알고리즘을 사용하였으며 국내 콜레라 발생건수에 적용시켜 보았다.