• Title/Summary/Keyword: Time-varying Asymmetry

Search Result 12, Processing Time 0.021 seconds

Modeling of a High Impedance Fault Using Two Time-Varying Resistances (두 개의 시변 저항을 이용한 고저항 사고 모델링)

  • Nam, Soon-Ryul;Kang, Yong-Cheol;Park, Jong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.10
    • /
    • pp.473-478
    • /
    • 2000
  • A more reliable algorithm for detecting a high impedance fault (HIF) requires voltage and current at the relaying point containing information of HIF characteristics including buildup/shoulder as well as nonlinearity/asymmetry. This paper presents a modeling method of an HIF in a distribution system. In order to do this, the proposed method uses two series time-varying resistances (TVRs) controlled by Transient Analysis of Control Systems (TACS) in EMTP. One TVR is employed for nonlinearity/asymmetry and then the other TVR for buildup/shoulder. The proposed method is implemented in EMTP and thus the voltage and current at the relaying point can be obtained.

  • PDF

Modeling of a High Impedance Fault in a Distribution System Using Time-Varying Resistance (시변 저항을 이용한 배전 계통의 고저항 사고 모델링)

  • Nam, Soon-Ryul;Kang, Yong-Chul;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.113-115
    • /
    • 1999
  • A more reliable relaying algorithm for detecting a high impedance fault (HIF) requires fault currents at the relaying point containing information of various HIF characteristics as well as load conditions. As HIF characteristics, there are buildup, shoulder, nonlinearity and asymmetry. This paper presents a modeling method of a HIF in a distribution system using EMTP. In order to represent HIF characteristics, the proposed method uses two time-varying resistances. The first TVR models nonlinearity and asymmetry using voltage as the input. The second TVR models buildup and shoulder using time information as the input. The proposed method is implemented in EMTP.

  • PDF

Estimation of Directional Frequency Response Functions for Asymmetric Rotor with Anisotropic Stators (비대칭성과 비등방성이 공존하는 회전체에서의 방향성 주파수 응답 함수 추정)

  • 서윤호;강성우;서정환;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.681-686
    • /
    • 2004
  • Identification of asymmetry and anisotropy of rotor system is important for diagnosis of rotating machinery. Directional frequency response functions (dFRFs) are known to be powerful tool in effectively detecting the presence of asymmetry or anisotropy. In this paper, an estimation method of dFRFs for rotors is newly developed, when both asymmetry and anisotropy are present. The method transforms the finite degrees-of-freedom time-varying linear differential equation of motion to an infinite degree-of-freedom time-invariant linear one, employing the modulated coordinates. The validity of the method is demonstrated by numerical simulation with a simple rotor model.

  • PDF

Performance analysis of BTB-TDMA considering asymmetry of propagation delays in UANets (수중 네트워크의 전파 비대칭성을 고려한 BTB-TDMA 성능 분석)

  • Cho, A-Ra;Yun, Changho;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.50-60
    • /
    • 2015
  • A Block-Time-Bounded Time Division Multiple Access (BTB-TDMA) medium access control protocol, which estimates the propagation delay of nodes according to their location and moving velocity information, has been proposed for underwater acoustic networks. BTB-TDMA provides nodes with their transmission schedules by a time block that is a time unit, newly designed for BTB-TDMA. In this paper, we investigate how the receiver collision, that is induced by the asymmetry between node's uplink and downlink propagation delay due to its mobility, affects the performance of BTB-TDMA. To do this, we analytically obtain the collision rate, the channel access delay, and the channel utilization by considering the asymmetry of propagation delay. Then, simulations are extensively performed with respect to the length of a time block by varying the number of nodes, the network range, and the node's velocity. Thus, the simulation results can suggest performance criteria to determine the optimal length of a time block which minimizes the collision rate and concurrently maximizes the channel access delay and the channel utilization.

Time-Varying Comovement of KOSPI 200 Sector Indices Returns

  • Kim, Woohwan
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.4
    • /
    • pp.335-347
    • /
    • 2014
  • This paper employs dynamic conditional correlation (DCC) model to examine time-varying comovement in the Korean stock market with a focus on the financial industry. Analyzing the daily returns of KOSPI 200 eight sector indices from January 2008 to December 2013, we find that stock market correlations significantly increased during the GFC period. The Financial Sector had the highest correlation between the Constructions-Machinery Sector; however, the Consumer Discretionary and Consumer Staples sectors indicated a relatively lower correlation between the Financial Sector. In terms of model fitting, the DCC with t distribution model concludes as the best among the four alternatives based on BIC, and the estimated shape parameter of t distribution is less than 10, implicating a strong tail dependence between the sectors. We report little asymmetric effect in correlation dynamics between sectors; however, we find strong asymmetric effect in volatility dynamics for each sector return.

Role of Mass Inflow and Supernova Feedback on Nuclear Ring Star Formation

  • Moon, Sanghyuk;Kim, Woong-Tae;Kim, Chang-Goo;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.37.1-37.1
    • /
    • 2021
  • Observations suggest the star formation in nuclear rings of barred galaxies proceeds episodically in time and sometimes asymmetrically in space. Existing theories and numerical simulations suggest that the episodic star formation is perhaps due to either supernova feedback combined with fluid instabilities or time-varying mass inflow rate. However, it has been challenging to discern what dominates in shaping the star formation history because the effects of the inflow and feedback are blended in global simulations of nuclear rings. To understand their effects separately, we construct semi-global models of nuclear rings, which treat the mass inflow rate as a model parameter. By running simulations with the inflow rates kept constant or oscillating in time, we find that the star formation rate (SFR) of the rings varies coherently with the inflow rate, while the feedback is responsible only for stochastic fluctuations of the SFR within a factor of two. The feedback instead plays an important role in maintaining the vertical dynamical equilibrium and setting the depletion time. While the asymmetry in the inflow does not necessarily lead to the asymmetry in the star formation, we find that the rings undergo a transient period of lopsided star formation when the inflow rate of only one dust lane is suddenly increased.

  • PDF

Incentives to Pioneer the Next Generation Market for Two Firms with Asymmetric Conditions (비대칭적 조건하에서 기업간의 신시장 개척 유인 분석)

  • Lim, Jong-In;Oh, Hyung-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.2
    • /
    • pp.189-207
    • /
    • 1996
  • In this paper, a market share competition model for two firms with asymmetric conditions is considered with. In the model, the asymmetry between two firms is given by the difference of market shares In the existing market and the change of market share is supposed to be occurred only through pioneering a new market. Since the timing decision of market pioneering is based on the continuous time domain, a super game structure which has infinitely many numbers of subgames is employed for the modeling. In the course of equilibrium finding, we show that there exists no subgame-perfect pure strategy equilibrium In this game. So, we apply a mixed strategy concept and find a unique subgame-perfect equilibrium behavior strategy. As a result of equilibrium analysis, we know that the relative sizes of pioneering Incentives between two firms are varying with parameter conditions. However, the global speed of market pioneering is proven to be independent with the level of asymmetry between two firms.

  • PDF

A Study on the Characteristics of Frequency Response Functions for Rotor System with Anisotropic Stator and Asymmetric Rotor (비등방 정지부 및 비대칭 회전부를 갖는 회전체의 주파수응답함수 특성에 관한 연구)

  • Han, Dong-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.42-50
    • /
    • 2005
  • Based upon the derived analytical model and equation of motion for the general rotor system with anisotropic stator and asymmetric rotor treated as a periodically time-varying system, the series of equations are structured by associating with the time modulated coefficients. The frequency response functions (FRFs) expressed by physical parameters are derived in such a convenient way from the direct inverse matrices of the Fourier transformation of those series of equations, from which the characteristics are analyzed and the properties are suggested.

Numerical Analysis of Electric Field Distribution Induced Inside a Realistic Brain Model Considering Conductivity Heterogeneity (전기전도도의 비균질성을 고려한 정밀 두뇌 모형 내부에서 유기되는 유도 전기장 분포해석)

  • Kim, Dong-Hun;Lee, Il-Ho;Won, Chul-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.314-319
    • /
    • 2008
  • In this paper, the electric field distribution induced inside the brain during Transcranial Magnetic Stimulation(TMS) has been thoroughly investigated in terms of tissue heterogeneity and anisotropy as well as different head models. To achieve this, first, an elaborate head model consisting of seven major parts of the head has been built based on the Magnetic Resonance(MR) image data. Then the Finite Element Method(FEM) has been used to evaluate the electric field distribution under different head models or three different conductivity conditions when the head model has been exposed to a time varying magnetic field achieved by utilizing the Figure-Of-Eight(FOE) stimulation coil. The results show that the magnitude as well as the distribution of the induced field is significantly affected by the degree of geometrical asymmetry of head models and conductivity conditions with respect to the center of the FOE coil.

Collisionless Magnetic Reconnection and Dynamo Processes in a Spatially Rotating Magnetic Field

  • Lee, Junggi;Choe, G.S.;Song, Inhyeok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2016
  • Spatially rotating magnetic fields have been observed in the solar wind and in the Earth's magnetopause as well as in reversed field pinch (RFP) devices. Such field configurations have a similarity with extended current layers having a spatially varying plasma pressure instead of the spatially varying guide field. It is thus expected that magnetic reconnection may take place in a rotating magnetic field no less than in an extended current layer. We have investigated the spontaneous evolution of a collisionless plasma system embedding a rotating magnetic field with a two-and-a-half-dimensional electromagnetic particle-in-cell (PIC) simulation. In magnetohydrodynamics, magnetic flux can be decreased by diffusion in O-lines. In kinetic physics, however, an asymmetry of the velocity distribution function can generate new magnetic flux near O- and X-lines, hence a dynamo effect. We have found that a magnetic-flux-reducing diffusion phase and a magnetic-flux-increasing dynamo phase are alternating with a certain period. The temperature of the system also varies with the same period, showing a similarity to sawtooth oscillations in tokamaks. We have shown that a modified theory of sawtooth oscillations can explain the periodic behavior observed in the simulation. A strong guide field distorts the current layer as was observed in laboratory experiments. This distortion is smoothed out as magnetic islands fade away by the O-line diffusion, but is soon strengthened by the growth of magnetic islands. These processes are all repeating with a fixed period. Our results suggest that a rotating magnetic field configuration continuously undergoes deformation and relaxation in a short time-scale although it might look rather steady in a long-term view.

  • PDF