• Title/Summary/Keyword: Time-step approximation

Search Result 76, Processing Time 0.179 seconds

Adomian Decomposition Method for Point Reactor Kinetics Problems

  • Cho, Young-Chul;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.452-457
    • /
    • 1996
  • A system, such as a reactor point kinetics equation, can be solved with Adomian Decomposition Method (ADM) which uses the notion that all solutions and operators can be expressed as an infinite sum of those basis states, like Adomian polynomials. In this work, ADM is applied to point reactor kinetics equations for step reactivity insertion, ramp input of reactivity, and nonlinear feedback cases without linearization approximation. The results of ADM are more accurate and faster than those of other existing methods, even though we use comparatively large time step sizes.

  • PDF

A 10-bit 10-MS/s 0.18-um CMOS Asynchronous SAR ADC with Time-domain Comparator (시간-도메인 비교기를 이용하는 10-bit 10-MS/s 0.18-um CMOS 비동기 축차근사형 아날로그-디지털 변환기)

  • Jeong, Yeon-Hom;Jang, Young-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.88-90
    • /
    • 2012
  • This paper describes a 10-bit 10-MS/s asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) with a rail-to-rail input range. The proposed SAR ADC consists of a capacitor digital-analog converter (DAC), a SAR logic and a comparator. To reduce the frequency of an external clock, the internal clock which is asynchronously generated by the SAR logic and the comparator is used. The time-domain comparator with a offset calibration technique is used to achieve a high resolution. To reduce the power consumption and area, a split capacitor-based differential DAC is used. The designed asynchronous SAR ADC is fabricated by using a 0.18 um CMOS process, and the active area is $420{\times}140{\mu}m^2$. It consumes the power of 0.818 mW with a 1.8 V supply and the FoM is 91.8 fJ/conversion-step.

  • PDF

A Fast Scheme for Inverting Single-Hole Electromagnetic Data

  • Kim Hee Joon;Lee Jung-Mo;Lee Ki Ha
    • Proceedings of the KSEEG Conference
    • /
    • 2002.04a
    • /
    • pp.167-169
    • /
    • 2002
  • The extended Born, or localized nonlinear approximation of integral equation (IE) solution has been applied to inverting single-hole electromagnetic (EM) data using a cylindrically symmetric model. The extended Born approximation is less accurate than a full solution but much superior to the simple Born approximation. When applied to the cylindrically symmetric model with a vertical magnetic dipole source, however, the accuracy of the extended Born approximation is greatly improved because the electric field is scalar and continuous everywhere. One of the most important steps in the inversion is the selection of a proper regularization parameter for stability. Occam's inversion (Constable et al., 1987) is an excellent method for obtaining a stable inverse solution. It is extremely slow when combined with a differential equation method because many forward simulations are needed but suitable for the extended Born solution because the Green's functions, the most time consuming part in IE methods, are repeatedly re-usable throughout the inversion. In addition, the If formulation also readily contains a sensitivity matrix, which can be revised at each iteration at little expense. The inversion algorithm developed in this study is quite stable and fast even if the optimum regularization parameter Is sought at each iteration step. Tn this paper we show inversion results using synthetic data obtained from a finite-element method and field data as well.

  • PDF

Reproducing kernel based evaluation of incompatibility tensor in field theory of plasticity

  • Aoyagi, Y.;Hasebe, T.;Guan, P.C.;Chen, J.S.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.4
    • /
    • pp.423-435
    • /
    • 2008
  • This paper employs the reproducing kernel (RK) approximation for evaluation of field theory-based incompatibility tensor in a polycrystalline plasticity simulation. The modulation patterns, which is interpreted as mimicking geometrical-type dislocation substructures, are obtained based on the proposed method. Comparisons are made using FEM and RK based approximation methods among different support sizes and other evaluation conditions of the strain gradients. It is demonstrated that the evolution of the modulation patterns needs to be accurately calculated at each time step to yield a correct physical interpretation. The effect of the higher order strain derivative processing zone on the predicted modulation patterns is also discussed.

A Nonlinear Navigation Filter for Biomimetic Robot (생체모방 로봇을 위한 비선형 항법 필터)

  • Seong, Sang-Man
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.175-180
    • /
    • 2012
  • A nonlinear navigation filter for biomimetic robot using analytic approximation of mean and covariance of state variable is proposed. The approximations are performed at the time update step in the filter structure. The mean is approximated to the 3rd order of Taylor's series expansion of true mean and the covariance is approximated to the 3rd order either. The famous EKF is a nonlinear filtering method approximating the mean to 1st order and the covariance to the 3rd order. The UKF approximate them to the higher orders by numerical method. The proposed method derived a analytical approximation of them for navigation system and therefore don't need so called sigma point transformation in UKF. The simulation results show that the proposed method can be a good alternative of UKF in the systems which require less computational burden.

Analysis of Thermal flow Field Uing Equal Order Linear Finite Element and Fractional Step Method (동차선형 유한요소와 Fractional Step방법을 이용한 열유동장의 해석)

  • ;;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2667-2677
    • /
    • 1995
  • A new numerical algorithm using equal order linear finite element and fractional step method has been developed which is capable of analyzing unsteady fluid flow and heat transfer problems. Streamline Upwind Petrov-Galerkin (SUPG) method is used for the weighted residual formulation of the Navier-Stokes equations. It is shown that fractional step method, in which pressure term is splitted from the momentum equation, reduces computer memory and computing time. In addition, since pressure equation is derived without any approximation procedure unlike in the previously developed SIMPLE algorithm based FEM codes, the present numerical algorithm gives more accurate results than them. The present algorithm has been applied preferentially to the well known bench mark problems associated with steady flow and heat transfer, and proves to be more efficient and accurate.

Explicit Matrix Expressions of Progressive Iterative Approximation

  • Chen, Jie;Wang, Guo-Jin
    • International Journal of CAD/CAM
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Just by adjusting the control points iteratively, progressive iterative approximation (PIA) presents an intuitive and straightforward scheme such that the resulting limit curve (surface) can interpolate the original data points. In order to obtain more flexibility, adjusting only a subset of the control points, a new method called local progressive iterative approximation (LPIA) has also been proposed. But to this day, there are two problems about PIA and LPIA: (1) Only an approximation process is discussed, but the accurate convergence curves (surfaces) are not given. (2) In order to obtain an interpolating curve (surface) with high accuracy, recursion computations are needed time after time, which result in a large workload. To overcome these limitations, this paper gives an explicit matrix expression of the control points of the limit curve (surface) by the PIA or LPIA method, and proves that the column vector consisting of the control points of the PIA's limit curve (or surface) can be obtained by multiplying the column vector consisting of the original data points on the left by the inverse matrix of the collocation matrix (or the Kronecker product of the collocation matrices in two direction) of the blending basis at the parametric values chosen by the original data points. Analogously, the control points of the LPIA's limit curve (or surface) can also be calculated by one-step. Furthermore, the $G^1$ joining conditions between two adjacent limit curves obtained from two neighboring data points sets are derived. Finally, a simple LPIA method is given to make the given tangential conditions at the endpoints can be satisfied by the limit curve.

An Analytic Study on the Relations between the Ziegler-Nichols Tuning Methods for Controllers (지글러-니콜스 제어파라미터 조정법 (1), (2)의 연관성에 대한 해석적 연구)

  • 강인철;최순만;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.219-225
    • /
    • 2002
  • Parameter tuning methods by Ziegler-Nichols for PID controllers are generally classified into Z-N(1) and Z-N(2). The purpose of this paper is to describe what relations exist between the methods of Z-N(1) and Z-N(2), or how Z-N(1) can be originated from Z-N(2) by analyzing one loop control system composing of P or PI controller and time delay process. In this paper, for the first step to seek mutual relations, the simple formulas of Z-N(2) are transformed into those composing of the same parameters as Z-N(1) which is derived from the analysis of frequency characteristics. Then, the approximation of the actual ultimate frequency is proposed as important premise in the translation between Z-N(1) and (2). Such equalization and approximation brings a simple approximated formula which can explain how Z-N(1) is originated from the Z-N(2) in the form of formula.

A Preconditioning Method for Two-Phase Flows with Cavitation

  • Shin B.R.;Yamamoto S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.181-182
    • /
    • 2003
  • A preconditioned numerical method for gas-liquid to-phase flow is applied to solve cavitating flow. The present method employs a density based finite-difference method of dual time-stepping integration procedure and Roe's flux difference splitting approximation with MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. The method permits simple treatment of the whole gas-liquid two-phase flow field including wave propagation, large density changes and incompressible flow characteristics at low Mach number. By this method, two-dimensional internal flows through a venturi tuve and decelerating cascades are computed and discussed.

  • PDF

ECG signal compression based on B-spline approximation (B-spline 근사화 기반의 심전도 신호 압축)

  • Ryu, Chun-Ha;Kim, Tae-Hun;Lee, Byung-Gook;Choi, Byung-Jae;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.653-659
    • /
    • 2011
  • In general, electrocardiogram(ECG) signals are sampled with a frequency over 200Hz and stored for a long time. It is required to compress data efficiently for storing and transmitting them. In this paper, a method for compression of ECG data is proposed, using by Non Uniform B-spline approximation, which has been widely used to approximation theory of applied mathematics and geometric modeling. ECG signals are compressed and reconstructed using B-spline basis function which curve has local controllability and control a shape and curve in part. The proposed method selected additional knot with each step for minimizing reconstruction error and reduced time complexity. It is established that the proposed method using B-spline approximation has good compression ratio and reconstruct besides preserving all feature point of ECG signals, through the experimental results from MIT-BIH Arrhythmia database.