• Title/Summary/Keyword: Time-series classification

Search Result 302, Processing Time 0.029 seconds

Vegetation Classification from Time Series NOAA/AVHRR Data

  • Yasuoka, Yoshifumi;Nakagawa, Ai;Kokubu, Keiko;Pahari, Krishna;Sugita, Mikio;Tamura, Masayuki
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.429-432
    • /
    • 1999
  • Vegetation cover classification is examined based on a time series NOAA/AVHRR data. Time series data analysis methods including Fourier transform, Auto-Regressive (AR) model and temporal signature similarity matching are developed to extract phenological features of vegetation from a time series NDVI data from NOAA/AVHRR and to classify vegetation types. In the Fourier transform method, typical three spectral components expressing the phenological features of vegetation are selected for classification, and also in the AR model method AR coefficients are selected. In the temporal signature similarity matching method a new index evaluating the similarity of temporal pattern of the NDVI is introduced for classification.

  • PDF

Time-Series based Dataset Selection Method for Effective Text Classification (효율적인 문헌 분류를 위한 시계열 기반 데이터 집합 선정 기법)

  • Chae, Yeonghun;Jeong, Do-Heon
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.1
    • /
    • pp.39-49
    • /
    • 2017
  • As the Internet technology advances, data on the web is increasing sharply. Many research study about incremental learning for classifying effectively in data increasing. Web document contains the time-series data such as published date. If we reflect time-series data to classification, it will be an effective classification. In this study, we analyze the time-series variation of the words. We propose an efficient classification through dividing the dataset based on the analysis of time-series information. For experiment, we corrected 1 million online news articles including time-series information. We divide the dataset and classify the dataset using SVM and $Na{\ddot{i}}ve$ Bayes. In each model, we show that classification performance is increasing. Through this study, we showed that reflecting time-series information can improve the classification performance.

Time Series Representation Combining PIPs Detection and Persist Discretization Techniques for Time Series Classification (시계열 분류를 위한 PIPs 탐지와 Persist 이산화 기법들을 결합한 시계열 표현)

  • Park, Sang-Ho;Lee, Ju-Hong
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.97-106
    • /
    • 2010
  • Various time series representation methods have been suggested in order to process time series data efficiently and effectively. SAX is the representative time series representation method combining segmentation and discretization techniques, which has been successfully applied to the time series classification task. But SAX requires a large number of segments in order to represent the meaningful dynamic patterns of time series accurately, since it loss the dynamic property of time series in the course of smoothing the movement of time series. Therefore, this paper suggests a new time series representation method that combines PIPs detection and Persist discretization techniques. The suggested method represents the dynamic movement of high-diemensional time series in a lower dimensional space by detecting PIPs indicating the important inflection points of time series. And it determines the optimal discretizaton ranges by applying self-transition and marginal probabilities distributions to KL divergence measure. It minimizes the information loss in process of the dimensionality reduction. The suggested method enhances the performance of time series classification task by minimizing the information loss in the course of dimensionality reduction.

Analyzing performance of time series classification using STFT and time series imaging algorithms

  • Sung-Kyu Hong;Sang-Chul Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.1-11
    • /
    • 2023
  • In this paper, instead of using recurrent neural network, we compare a classification performance of time series imaging algorithms using convolution neural network. There are traditional algorithms that imaging time series data (e.g. GAF(Gramian Angular Field), MTF(Markov Transition Field), RP(Recurrence Plot)) in TSC(Time Series Classification) community. Furthermore, we compare STFT(Short Time Fourier Transform) algorithm that can acquire spectrogram that visualize feature of voice data. We experiment CNN's performance by adjusting hyper parameters of imaging algorithms. When evaluate with GunPoint dataset in UCR archive, STFT(Short-Time Fourier transform) has higher accuracy than other algorithms. GAF has 98~99% accuracy either, but there is a disadvantage that size of image is massive.

Classification of Time-Series Data Based on Several Lag Windows

  • Kim, Hee-Young;Park, Man-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.3
    • /
    • pp.377-390
    • /
    • 2010
  • In the case of time-series analysis, it is often more convenient to rely on the frequency domain than the time domain. Spectral density is the core of the frequency-domain analysis that describes autocorrelation structures in a time-series process. Possible ways to estimate spectral density are to compute a periodogram or to average the periodogram over some frequencies with (un)equal weights. This can be an attractive tool to measure the similarity between time-series processes. We employ the metrics based on a smoothed periodogram proposed by Park and Kim (2008) for the classification of different classes of time-series processes. We consider several lag windows with unequal weights instead of a modified Daniel's window used in Park and Kim (2008). We evaluate the performance under various simulation scenarios. Simulation results reveal that the metrics used in this study split the time series into the preassigned clusters better than do the raw-periodogram based ones proposed by Caiado et al. 2006. Our metrics are applied to an economic time-series dataset.

A Proposal of Sensor-based Time Series Classification Model using Explainable Convolutional Neural Network

  • Jang, Youngjun;Kim, Jiho;Lee, Hongchul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.55-67
    • /
    • 2022
  • Sensor data can provide fault diagnosis for equipment. However, the cause analysis for fault results of equipment is not often provided. In this study, we propose an explainable convolutional neural network framework for the sensor-based time series classification model. We used sensor-based time series dataset, acquired from vehicles equipped with sensors, and the Wafer dataset, acquired from manufacturing process. Moreover, we used Cycle Signal dataset, acquired from real world mechanical equipment, and for Data augmentation methods, scaling and jittering were used to train our deep learning models. In addition, our proposed classification models are convolutional neural network based models, FCN, 1D-CNN, and ResNet, to compare evaluations for each model. Our experimental results show that the ResNet provides promising results in the context of time series classification with accuracy and F1 Score reaching 95%, improved by 3% compared to the previous study. Furthermore, we propose XAI methods, Class Activation Map and Layer Visualization, to interpret the experiment result. XAI methods can visualize the time series interval that shows important factors for sensor data classification.

QP-DTW: Upgrading Dynamic Time Warping to Handle Quasi Periodic Time Series Alignment

  • Boulnemour, Imen;Boucheham, Bachir
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.851-876
    • /
    • 2018
  • Dynamic time warping (DTW) is the main algorithms for time series alignment. However, it is unsuitable for quasi-periodic time series. In the current situation, except the recently published the shape exchange algorithm (SEA) method and its derivatives, no other technique is able to handle alignment of this type of very complex time series. In this work, we propose a novel algorithm that combines the advantages of the SEA and the DTW methods. Our main contribution consists in the elevation of the DTW power of alignment from the lowest level (Class A, non-periodic time series) to the highest level (Class C, multiple-periods time series containing different number of periods each), according to the recent classification of time series alignment methods proposed by Boucheham (Int J Mach Learn Cybern, vol. 4, no. 5, pp. 537-550, 2013). The new method (quasi-periodic dynamic time warping [QP-DTW]) was compared to both SEA and DTW methods on electrocardiogram (ECG) time series, selected from the Massachusetts Institute of Technology - Beth Israel Hospital (MIT-BIH) public database and from the PTB Diagnostic ECG Database. Results show that the proposed algorithm is more effective than DTW and SEA in terms of alignment accuracy on both qualitative and quantitative levels. Therefore, QP-DTW would potentially be more suitable for many applications related to time series (e.g., data mining, pattern recognition, search/retrieval, motif discovery, classification, etc.).

Time Series Classification of Cryptocurrency Price Trend Based on a Recurrent LSTM Neural Network

  • Kwon, Do-Hyung;Kim, Ju-Bong;Heo, Ju-Sung;Kim, Chan-Myung;Han, Youn-Hee
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.694-706
    • /
    • 2019
  • In this study, we applied the long short-term memory (LSTM) model to classify the cryptocurrency price time series. We collected historic cryptocurrency price time series data and preprocessed them in order to make them clean for use as train and target data. After such preprocessing, the price time series data were systematically encoded into the three-dimensional price tensor representing the past price changes of cryptocurrencies. We also presented our LSTM model structure as well as how to use such price tensor as input data of the LSTM model. In particular, a grid search-based k-fold cross-validation technique was applied to find the most suitable LSTM model parameters. Lastly, through the comparison of the f1-score values, our study showed that the LSTM model outperforms the gradient boosting model, a general machine learning model known to have relatively good prediction performance, for the time series classification of the cryptocurrency price trend. With the LSTM model, we got a performance improvement of about 7% compared to using the GB model.

Time series representation for clustering using unbalanced Haar wavelet transformation (불균형 Haar 웨이블릿 변환을 이용한 군집화를 위한 시계열 표현)

  • Lee, Sehun;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.707-719
    • /
    • 2018
  • Various time series representation methods have been proposed for efficient time series clustering and classification. Lin et al. (DMKD, 15, 107-144, 2007) proposed a symbolic aggregate approximation (SAX) method based on symbolic representations after approximating the original time series using piecewise local mean. The performance of SAX therefore depends heavily on how well the piecewise local averages approximate original time series features. SAX equally divides the entire series into an arbitrary number of segments; however, it is not sufficient to capture key features from complex, large-scale time series data. Therefore, this paper considers data-adaptive local constant approximation of the time series using the unbalanced Haar wavelet transformation. The proposed method is shown to outperforms SAX in many real-world data applications.

Anomaly Detection of Big Time Series Data Using Machine Learning (머신러닝 기법을 활용한 대용량 시계열 데이터 이상 시점탐지 방법론 : 발전기 부품신호 사례 중심)

  • Kwon, Sehyug
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.33-38
    • /
    • 2020
  • Anomaly detection of Machine Learning such as PCA anomaly detection and CNN image classification has been focused on cross-sectional data. In this paper, two approaches has been suggested to apply ML techniques for identifying the failure time of big time series data. PCA anomaly detection to identify time rows as normal or abnormal was suggested by converting subjects identification problem to time domain. CNN image classification was suggested to identify the failure time by re-structuring of time series data, which computed the correlation matrix of one minute data and converted to tiff image format. Also, LASSO, one of feature selection methods, was applied to select the most affecting variables which could identify the failure status. For the empirical study, time series data was collected in seconds from a power generator of 214 components for 25 minutes including 20 minutes before the failure time. The failure time was predicted and detected 9 minutes 17 seconds before the failure time by PCA anomaly detection, but was not detected by the combination of LASSO and PCA because the target variable was binary variable which was assigned on the base of the failure time. CNN image classification with the train data of 10 normal status image and 5 failure status images detected just one minute before.