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Abstract 
Dynamic time warping (DTW) is the main algorithms for time series alignment. However, it is unsuitable for 
quasi-periodic time series. In the current situation, except the recently published the shape exchange 
algorithm (SEA) method and its derivatives, no other technique is able to handle alignment of this type of 
very complex time series. In this work, we propose a novel algorithm that combines the advantages of the SEA 
and the DTW methods. Our main contribution consists in the elevation of the DTW power of alignment 
from the lowest level (Class A, non-periodic time series) to the highest level (Class C, multiple-periods time 
series containing different number of periods each), according to the recent classification of time series 
alignment methods proposed by Boucheham (Int J Mach Learn Cybern, vol. 4, no. 5, pp. 537-550, 2013). The 
new method (quasi-periodic dynamic time warping [QP-DTW]) was compared to both SEA and DTW 
methods on electrocardiogram (ECG) time series, selected from the Massachusetts Institute of Technology - 
Beth Israel Hospital (MIT-BIH) public database and from the PTB Diagnostic ECG Database. Results show 
that the proposed algorithm is more effective than DTW and SEA in terms of alignment accuracy on both 
qualitative and quantitative levels. Therefore, QP-DTW would potentially be more suitable for many 
applications related to time series (e.g., data mining, pattern recognition, search/retrieval, motif discovery, 
classification, etc.). 
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1. Introduction 

A time series is a continuation of couples < (v1,t1), (v2,t2), ..., (vi,ti), ...> where vi  is a value or a vector of 
values taken at a moment ti. This notation can be abbreviated in <v1, v2, ..., vi, ...> when the reference to 
the time does not need to be clarified [1]. 

There are an increasing amount of works related to time series, given their usefulness in different 
areas, especially in finance, where the calculation of changes in the exchange rate is very important. For 
example, the modeling of time series for financial forecasting was carried out by Barbulescu and Bautu 
[2]. In economics, Awad et al. [3] performed prediction of future values of time series related to 
economic activities. In industry, profiling and fault detections in systems have been performed by [4,5]. 
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Classification and identification of electrocardiograms (ECGs) of patients with heart diseases is also a 
very active area related to time series [6-8]. The detection of abnormalities in ECG by aligning time 
series is much appreciated. It has particularly been performed by the Shape Exchange Algorithm (SEA) 
method of Boucheham [9,10]. Time series motif discovery from unbounded streams is also a growing 
field [11]. 

Studies in the field of time series data mining evolve around two key issues: the choice of 
distance/similarity measures to match time series (effectiveness), and the mechanisms to accelerate the 
efficiency of the match. Concerning the first question, the matching of time series is divided into two 
categories: comparison and alignment. The difference between the two is that the comparison is based 
on a measure of distance/similarity that renders a numerical value reflecting the degree of resemblance 
between the two time series. However, alignment is used to specify exactly where the time series differ 
and where they are similar. In other words, alignment is a kind of explanation of time series, one by the 
other, which, obviously, is a more difficult problem to resolve. 

This study is dedicated to alignment of quasi-periodic time series and especially to heartbeats time 
series provided from the ECG records. Quasi-periodic time series are concatenations of quasi-similar 
forms called periods [9]. 

Fig. 1 presents the characteristics of an ECG composed of three quasi-regulars periods reflecting three 
heart cycles. Each cycle (period) is itself composed of three consecutive basic patterns: P wave, QRS 
complex, and T wave. 
 
   

     
 
Fig. 1. A typical ECG segment with three periods. 

 

 
 
Fig. 2. Difficulties encountered in time series alignment. (a) Different time scaling, (b) different 
amplitude scaling, (c) shift on the amplitude axis, and (d) shift on the time axis. 

 
Alignment of time series and search of a query of time series pose difficult problems. These problems 

are: difference in time axis scales (Fig. 2(a)), difference in amplitude axis scales (Fig. 2(b)), shift on the 
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amplitude axis (Fig. 2(c)) between the series, shift on the time axis (Fig. 2(d)) and different type of 
noise. Particularly, ECG traces are characterised by morphological changes due to the problems of 
variability of ECG measurement. 

Time series are also characterized by very big sizes of collected data, big dimensionality and the need 
of permanent update [12]; what makes search, query, classification, which are all based on time series 
comparison and alignment, a very difficult task. 

Dynamic time warping (DTW) [13] is generally recognized by several researchers [14–16] to be the 
most effective alignment technique for time series, because it handles the problems of distortion on the 
time and amplitude axis with great elegance. 

However, the DTW has difficulties to deal with these problems when it comes to align quasi-periodic 
time series with different number of periods (cycles) each. In particular, the method completely fails in 
the alignment of quasi-periodic time series which are significantly phase shifted as illustrated in 
Fig. 3(a). 

 

          
(a)   

 

          
(b) 

 

         
(c) 

Fig. 3. Different situations of quasi-periodic time series: DTW cannot deal with the class B and C, 
whereas SEA and QPDTW match all cases. (a) One period no phase shift, (b) one period with phase 
shift, and (c) periodic-many-periods with phase shift. 

 

SEA [9] is a method that aligns quasi-periodic time series. However, when it comes to align time 
series which are seriously contaminated by noise, the SEA method shows some weaknesses as illustrated 
in Fig. 4. 

To remedy to the problems of DTW and SEA, we propose in this work a novel algorithm that 
combines the advantages of these methods. Our method deals effectively with the quasi-periodic time 
series even when they are significantly phase shifted and contaminated by noise. The new method is 
then called QP-DTW (quasi-periodic dynamic time warping). 

The tests were performed on ECG traces, selected from the public database “Massachusetts Institute 
of Technology - Beth Israel Hospital (MIT-BIH)” [17] and from the PTB Diagnostic ECG Database 
[18]. The results show that the proposed algorithm is more efficient than DTW and SEA in terms of 
alignment accuracy, quantitatively and qualitatively. 

The remaining part of this paper is organized as follows. Section 2 presents some related works 
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related to time series comparison/alignment. Section 3 presents the DTW method. Section 4 presents 
the SEA method. In Section 5, we present our proposed method QP-DTW. Section 6 is devoted to 
application of our method and to experimental results. Finally, this work is terminated with a general 
conclusion and future plans. 

 

           
 

            
(a) (b) 

Fig. 4. Illustration of the problems of the SEA method. (a) Original signals and (b) alignment of the 
original signals. 

 
 

2. Related Works and Motivations 

2.1 Related Works 
 

According to Boucheham [14] matching methods for time series can be divided into two major 
classes. The first class is based on the nature of the algorithm; either they are comparison methods or 
alignment methods. Comparison methods render only one numerical value in the range [0, 1] that 
reflects the similarity of the sequences. Obviously these methods are incapable to align the time series. 
The second class is based on the type of the used data; either they are periodic methods or non-periodic 
methods. 

 

2.1.1 Comparison or alignment methods 
 

Comparison methods 
The most famous comparison method is the Euclidean distance. It is fast and simple but works only 

for time series of equal lengths. It has been also demonstrated by several researchers that this distance is 
fragile [19,20] because it is unable to handle the time offsets of a time series with respect to one other. 
Fig. 5 shows that even the two time series are similar, the Euclidian distance notice that they are 
different. This is due to the point to point alignment. 
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(a)                                                                                (b) 

Fig. 5. (a) Inefficiency of alignment by the Euclidean distance. (b) Effectiveness of alignment by the 
DTW. 

 
Another very effective method of comparison is the discrete Fourier transform (DFT) [1]. The 

authors represent temporal sequences in the frequency domain with the first most significant k 
coefficients of Fourier and they use the Euclidian distance to compare them starting from the fact that 
the Euclidean distance between two time series in the time domain is the same in the frequency domain. 
The advantage of this method is that the amplitudes of the frequencies don’t change despite the time 
shifts. Another method of comparison is the histogram. Chen and Ozsu [21] build a histogram for each 
segment of both time series and compare the corresponding histograms. After that they developed 
multi-scale histograms. They proved that it can efficiently compare time series data even when they are 
of different length and contain noise or time shifting and scaling. The edit distance between two 
alphanumeric sequences is another comparison method. It is a way of quantifying how dissimilar are 
two strings (e.g., words) by counting the minimum number of operations required to transform one 
string into the other [22]. 

 
Alignment methods 
Bozkaya et al. [23] proposed a modified version of the edit distance. They referred to the method by 

longest common sub-sequence (LCSS). The LCSS is an alignment method based on the number of pairs 
of ordered temporal sub-sequences which are similar but not overlapped. If there is enough the 
sequences will be regarded as similar. The method then compares each point in a series with 0 or 1 
point on the other series. The LCSS is elastic and allows stretching in order to match the identical 
elements between them. It is mainly used for treating the noisy data because it ignores the extreme 
values by counting only the commons sub sequences. It is also effective for the problems of different 
time scaling. 

The DTW is a very much appreciated alignment method. Fig. 5(b) illustrates the effectiveness of the 
DTW comparing to the Euclidian distance (Fig. 5(a)). Instead of comparing each point series with 
another point of another series, which occurs at the same time t, the measure compares each point 
series with one or many points of another series, these points can be shifted. 

There are various applications of the DTW, we cite, ECG heart-beat clustering and analysis [24,25], 
ECG classification [26,27]. 

The SEA is a simple and parameter-free method. It was proposed by Boucheham [9] to deal with the 
problem of quasi-periodic time series alignment. The method is based on the sorting of time series on 
their amplitude axes. This sort gives the time series a kind of signature, in the sense that the resulting 
traces represents a stable and global characteristics of the used time series. 
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2.1.2 Periodic or non-periodic methods 
 

Based on the nature of the used data, Boucheham [14] classifies alignment methods of time series in 
ascending order of complexity of the data. 

 
Class A: Non-periodic or one period no phase shift 
Methods in this class treat time series that are non periodic or periodic with only one period with the 

condition that none of the two periodic time series is significantly phase shifted with respect to the 
other (e.g., Fig. 3(a)). Methods in this category are DFT, LCSS, Euclidian distance, histograms, and 
DTW. 

 
Class B: One period with phase shift 

Time series in this class are quasi-periodic and composed of one period. However, each time series is 
phase-shifted with respect to the others (e.g., Fig. 3(b)). Time series can also be composed of the same 
number of periods. The phase independent DTW [15] is in this class. 

 
Class C: Multiple periods with phase shift 
Time series in this class are quasi-periodic and composed of many periods each, but not necessarily 

the same number of periods. Indeed, time series that contain many periods but the same number of 
periods brings the data to class A if there is no (significant) phase shift and to class B if there is 
(significant) phase shift [14]. 

Thus, the types of data specific to this class are time series that are phase-shifted, in addition of being 
composed of a different number of periods each (e.g., Fig. 3(c)). Methods in this class are SEA, 
FANSEA, ASEAL [9,14,28] and QP-DTW. 

 

2.2 Motivation 
 

The DTW method suffers from several problems which are subjects of many researches. In this 
context, we list: 

• The DTW cannot deal with the phase shift problems in quasi-periodic time series. In Fig. 6, 
both ECG plots are similar because they result from the same person but they do not begin at 
the same time. In this case, the DTW done a bad alignment; only the QRS complex has been 
correctly aligned, the other components of the two ECG time series (P and T waves) have just 
been matched with their sequentially equivalent parts. This is a case of phase shift problem. 

• For the matching of objects in the images by their contours, the alignment of the shapes can be 
solved with the DTW, by the transformation of the 2D forms into 1D signal.  However if a 
rotation is applied to one of the objects, the task becomes impossible to achieve by the DTW. To 
solve this problem Keogh et al. [15] proposed the Phase Independent DTW method. Their 
method is very expensive because it implements techniques of indexation to allow the 
verification of all the possible rotations of shape. This method deals also with the phase shifted 
quasi-periodic time series; but these time series cannot have a different number of periods. They 
can have either a single period, or the same number of periods each. 

• Another problem that DTW cannot solve is the alignment of similar time series that have some 
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peaks of amplitudes with heights slightly difference as shown in Fig. 4, which implies difficulties 
in analysis and diagnosis. To solve this problem, Keogh and Pazzani [29] proposed a 
modification of the DTW that does not consider the values of the points of the amplitude axis, 
but rather the characteristic of the highest level of the shape by considering the first derivative 
of the sequence. 

• The DTW sometimes gives pathological results because it tries to explain the variations of 
amplitudes by deforming the time axis. This problem is called the problem of “Singularity”. 
Most of the methods try to solve this problem by limiting the possible deformations [13,19,30]. 
However these methods cannot find the optimal warping path if the band of delimitation is too 
small or if it is too big [29].  

 

   
(a) (b) (c) 

Fig. 6. Illustration of the phase shift problem of DTW. 
 

• The SEA method has also difficulties to align similar time series that have some peaks of 
amplitude with heights slightly difference as shown in Fig. 4. In this figure the higher signal 
(blue) is significantly contaminated with low frequency noise (baseline wondering due to 
respiration). Improved versions of the SEA method have been proposed in [14,28,31]. 

 
2.3 Contribution 
 

Our main contribution consists in the elevation of the DTW power of alignment from the lowest level 
(class A, non-periodic time series) to the highest level (class C, multiple periods with phase shift), 
according to the recent classification of time series alignment methods proposed by Boucheham [14]. 
Indeed, the DTW is inappropriate to align quasi periodic time series like ECG signals, capnogram 
signals (a plot reflecting the quantity of expired CO2, extensively used in asthmatic patients surveillance, 
urgency medicine and also in surgery medicine) and electroencephalogram (EEG) signals (a plot 
measuring the electrical activity of the brain) unlike our method which is capable of aligning very 
complex quasi-periodic time series (according to the classification of Boucheham [14]). On the other 
hand and compared to the existing SEA method of Boucheham [9] the proposed QP-DTW performs 
significantly much better. 

 
 

3. Dynamic Time Warping 

The famous DTW is an alignment method. It was applied at first for the recognition of vocal 
sequences by [13,30] then it has been introduced in the field of data mining by Berndt and Clifford [19] 
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and knew a big success in this context. 
The DTW method consists in establishing a non linear alignment of sequences to allow the mapping 

of sequences which have different lengths or suffer from the time-shift problem. 
First, to align two sequences X= (xi), i = 1: n and Y = (yj), j = 1: m, we construct an accumulated 

distance matrix m×n, each cell represents the alignment between two points xi and yj calculated by one 
of the distances of Minkowski. The Euclidian distance (Eq. (1)) is the most often used metric to 
calculate these cells. 

 
2)(),( jiji yxyxd                                                                   (1) 

 
Technically, the values of the sequences to compare X = (xi), i = 1: n and Y = (yj), j = 1: m are 

replicated until obtaining the best matching between the sequences [32]. The obtained sequences have 
the same number of elements k with max (n,m) ≤ k ≤ n + m + 1. 

In the example shown in Fig. 7, the accumulated distance matrix M is presented. The sequences to 
compare X and Y, are presented to the underside of the matrix. After the calculation of the cumulative 
matrix, we calculate the minimum warping path W and we obtain the sequences X' and Y'.  The values 
of cells are calculated as follows: 

 
1. First cell:  ][]1,1[ 11 yxM   
2. First line: ]1,1[][],1[ 1  jMyxjM j

 

3. First column: ]1,1[][]1,[ 1  iMyxiM i  
4. All the other elements with the condition (i, j>1): 

]1,([),,1([],1,1([min(][],[  jiMjiMjiMyxjiM ij  

The mapping chosen for the DTW is the one that minimizes the Euclidian distance: 



k

i
ii ba

1
. 

 

 
Fig. 7. The accumulated distance matrix for the sequences X= (5, 8, 9, 7) and Y= (7, 5, 8, 7, 8). 

 
In this example the DTW(X, Y)=4. It is represented by the value of the last cell. The cells in gray 

colors represent the optimal warping path “W”. They indicate the replicated values and the alignment 
of the two sequences.  

The values that are close in the two sequences are replicated, such as the value 5 of the sequence X 
which is replicated twice in the sequence X' and put in correspondence with the values 5 and 7 of the 
sequence Y'. 

There are several constraints on the warping path we cite: 
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 Boundary Condition. w1 = (1, 1) and wK = (m, n), to force the end points in each series to match. 
 Continuity. Given wk = (a, b) then wk-1 = (a', b') where a–a' ≤ 1 and b–b' ≤ 1, to oblige the 

warping path to go to the adjacent cells. 
 Monotony. Given wk = (a, b) then wk-1 = (a', b') where a–a' ≥ 0 and b–b' ≥ 0 to force the points 

of W to be spaced monotonically in time. 
There are several warping path which satisfy these conditions, but we choose the one that minimizes 

the warping cost: 
 













 


KwYXDTW
K

k
k

1
min),(                                                          (2) 

 
The kth element of W is defined as wk = (i,j)k such that: 
 

Kk wwwwW ,...,,...,, 21                                                                                             (3) 

 
Eq. (4) illustrates the dynamic programming method used for the calculating of the optimal path 

which represents the DTW distance. Let D, this cumulative distance until wk cell. 
 

 )1,1();1,();,1(min),(),(  jiDjiDjiDjidyxD ji
 .                  (4) 

 
 

4. Shape Exchange Algorithm 

The principle of the method is as follows: 
Let X= (xi), i = 1: n and Y = (yj), j = 1: m be the two time series to match. 

1. Decompose X and Y on temporal indexes and amplitude indexes. 
2. Order the X and Y on their amplitudes indexes. 
3. Exchange amplitude indexes between X and Y without changing their temporal indexes which 

are in disorder. 
4. Reorder X and Y on their temporal indexes and reconstruct X and Y to XREC and YREC. 
5. Compare (X, XREC) and (Y, YREC). 

 
 

5. The Proposed Method: Quasi-Periodic Dynamic Time Warping 
(QP-DTW) 

Most of the methods that try to improve the DTW focus on the acceleration of its execution time 
[33,34]. However, the alignment quality of the DTW poses many problems [9,29], especially when the 
DTW comes to align quasi-periodic time series containing each a different number of quasi-
similar phases. To overcome this problem Boucheham [9] propose the SEA method. However this 
method uses the linear mapping to equalize the series of different length. The principle of the linear 
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mapping is to force the longest time series to shrink by accelerating the step in the temporal axis until it 
can match the shorter series and vice versa, the shortest series will stretch to match the longest series by 
browsing slowly the temporal index. The technique of linear mapping is not appropriate for the SEA 
method because the longest series loses some important values when shrinking. In our method, we have 
done a hybrid of the SEA and DTW methods, to take advantage of both methods. 

 

5.1 Time and Space Complexities 
 

Time complexity: Let n and m be the lengths of the time series to align, X and Y, respectively. Given 
that the time complexity of DTW is of O(nm) and the time complexity of SEA is of O(Max(n2,m2)), our 
hybrid method will have a time complexity of O(nm+Max(n2,m2)), which is of quadratic order. 

Space complexity: Given that the space complexity of DTW is of O(nm) and the space complexity of 
SEA is of O(n+m), our method QP-DTW will have a space complexity of O(nm+n+m), which is of 
quadratic order. 

 
Step 1: Finding the optimal warping path by the DTW 

The algorithm DTW is executed to equalize the length of the two time series and make the 
first mapping between them by the replication of certain values which are close in both time 
series, as illustrated in Fig. 7. 

Step 2: Sorting on the amplitude 
The sorting of the stretched time series, on the coordinates of their amplitude indexes is 
established to give them a stable signature. The result of this step is a matrix for each time 
series containing the sorted amplitudes in ascendant or descendent order with their 
equivalents temporal coordinates (not sorted). In this way, if the time series are similar but 
phase shifted, they will always have almost the same trace which represents their signatures. 
An example of signatures is illustrated in Fig. 8. 

 

 
(a) (b) 

Fig. 8. Signatures of the time series X and Y established by the two methods SEA (a) and QP-DTW (b). 
 
Step 3: Signatures exchange 

This step is divided into two parts. The first one consists in making the exchange of signatures 
between both time series. The first time series will receive the coordinates of amplitudes 
(signature) of the second time series and vice versa for the second series. The second part 
consists in restoring the normal size of the time series after the exchange of signature which 
requires that the time series are of equal length. Thus, the temporal indexes replied in every 
new series must be deleted with their equivalent amplitudes. This part does not affect the 
results of alignment; it just allows having a clearer visual inspection of the traces. 
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Step 4: Sorting on the time indexes and alignment 
Signatures represent well the characteristics of the time series but they do not consider the 
shifts and the differences of timescales. The sorting of the time series on the respective 
temporal indexes allows reconstructing them. 
Every time series will then be aligned with its reconstructed time series by using the 
correlation and PRD (percent root difference) factors as objective criteria and the visual 
inspection as subjective criteria. 

The proposed algorithm is described in Fig. 9. 
 

 
 

Fig. 9. Illustrative diagram of the proposed method QP-DTW. 
 
 

6. Experimental Tests and Discussion 

In this section, we present an illustrative example and we proceed to the numerical and the visual 
comparison between QP-DTW, DTW and SEA. The numerical comparison is performed by the PRD 
(Eq. (5)) and the correlation factor (Eq. (6)). The correlation must be between 0 and 1 and the PRD 
must be between 0% and 100%. 
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We indicate that all applications have been performed on a machine with the following specifications: 
Intel Pentium CPU U5400 (1.20 GHz) with 3 GB main memory, running under Windows 7. We also 
mention that all methods have been implemented in the MATLAB 12 programming environment. 
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We start the comparison by introducing an example of time series in the class C. In this example, we 

refer to the time series rec.215 of the MIT-BIH ECG database. Fig. 8(a) and (b) present the signatures of 
the time series X and Y for the SEA and QP-DTW methods. We see that the signatures established by 
QP-DTW are attached which confirm that the series come from the same recording. Unlike the 
signatures of SEA which are detached. Fig. 10(a) shows the original traces X and Y. Fig. 10(b) and (c) 
illustrate the alignment done respectively by SEA and QP-DTW methods for the time series X and its 
reconstructed time series (left of Fig. 10(b) and (c)) and for the time series Y and its reconstructed time 
series (right of Fig. 10(b) and (c)). Fig. 10(d) presents the alignment done by the DTW method for the 
time series X and Y. Note that the two traces are from the same time series but that they are of different 
lengths. They also have some pikes of amplitude of slightly different lengths and they are not taken at 
the same time (offset of 35 seconds for Y). The segment (X) was purposely taking at the beginning of 
the recording and the segment (Y) at the end of the recording to illustrate the phase shift problem in 
quasi periodic time series. 

Formulas are applied to the two traces (X and Y) with their respective reconstructed traces (Xrec and 
Yrec). As well we will report in Table 1, the PRD(X,Xrec), Corr(X,Xrec), PRD(Y,Yrec) and Corr(Y,Yrec) for  
SEA and QP-DTW methods and the PRD(X,Y), Corr(X,Y) for the DTW method. 

 

Table 1. QP-DTW vs. DTW and SEA for time series rec.215 and the reconstructed time series Xrec (resp. 
Yrec) 

 PRD(X,Y) PRD(X,Xrec) PRD(Y,Yrec) Corr(X,Y) Corr(X,Xrec) Corr(Y,Yrec) 

SEA - 32.0207 50.3374 - 0.9566 0.9561 

QP-DTW - 16.8858 21.6276 - 0.9906 0.9817 

DTW 68.0843 - - 0.7582 - - 
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(d) 

Fig. 10. Comparison of the SEA, QP-DTW, and DTW methods for the case of periodic-many-periods 
time series with phase shift (rec.215).  (a) Original signals. (b) Original signals vs. reconstructed signals 
by SEA. (c) Original signals vs. reconstructed signals by QP-DTW. (d) Original signal vs. warped signal 
by DTW. 
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The visual inspection of Fig. 10 and the numerical results reported in Table 1 show that despite all the 
problems previously cited, QP-DTW arrives to align these particularly very complex time series. We see 
also that SEA method doesn't do a good alignment because time series Y and its reconstruction are 
almost detached, only the QRSs have been correctly aligned. The DTW done a very bad alignment 
because, the second QRS of the time series Y haven’t been aligned with the QRSs of the time series X. 

 
6.1. Comparison of Similar Traces from the MIT-BIH ECG Database 
 

Fig. 11 shows the case of two plots of the same record with 1,000 samples of the time series rec.113 for 
X and 1,200 samples of the same time series with a shift of 30 seconds for Y. Fig. 11(a) presents the 
original time series. They have some peaks of amplitudes with heights slightly difference due to low 
frequency noise. Fig. 11(b) shows the alignment performed by SEA. We see that the original and the 
reconstructed time series are detached because of the problem of low frequency noise. Fig. 11(c) shows 
that despite all the problems mentioned above, QP-DTW done an almost perfect reconstruction, to the 
point that it is difficult to distinguish between the original and the reconstructed time series. Fig. 11(d) 
shows the misalignment of X and Y done by DTW because of the problem of quasi periodicity and low 
frequency noise of the time series. The numerical results presented in Table 2 confirm this state with a 
very low error rate (PRD) and a very high correlation in favor of QP-DTW. In contrary they indicate a 
high error rate (PRD) for DTW and SEA, an average correlation for SEA and a low correlation for 
DTW. 

 
Table 2. Comparative table of the methods DTW, SEA, and QP-DTW concerning similar time series of 
Figs. 11–13 from the MIT-BIH ECG database 

ECG segments 
DTW SEA QP-DTW                      

PRD% Corr Mean PRD% Mean Corr Mean PRD% Mean Corr 

(215,215) 51.97 0.8554 35.32 0.9680 23.82 0.9887 

(113,113) 40.48 0.9225 46.85 0.9689 14.55 0.9914 

(104,104) 34.48 0.9389 51.83 0.8734 20.51 0.9849 

 

Fig. 12 shows the case of two plots of the same record with 1,000 samples of the time series rec.215 for 
X and 2000 samples of the same time series with a shift of 35 seconds for Y. Fig. 12(a) presents the 
original time series. The X signal has been taken at the beginning of the recording and the Y signal has 
been taken at the end of the recording to illustrate the phase shift problem. Fig. 12(b) shows the 
alignment performed by SEA. We see that SEA method fails in face of the problem of low frequency 
noise which is presented in the Y signal. Fig. 12(c) shows the alignment performed by QP-DTW. Fig. 
12(d) presents the bad alignment done by DTW. We see that our method resolve efficiently the 
problems of phase shift and noise. The factors of similarity (Corr) and of dissimilarity (PRD) clearly 
indicate the superiority of our method in comparison with DTW and SEA. The correlation of QP-DTW 
is higher than those of DTW and SEA and its PRD is the lowest. It represents the half of the value of 
PRD of DTW. 
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(d) 

Fig. 11. Illustration of alignment by SEA, QP-DTW, and DTW of two similar traces (113,113) with shift 
of 30 seconds for Y. (a) Original traces. (b) SEA alignment. (c) QP-DTW alignment. (d) DTW 
alignment. 
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(d) 

Fig. 12. Illustration of alignment by SEA, QP-DTW, and DTW of two similar traces (215,215) with shift 
of 35 seconds for Y. (a) Original traces. (b) SEA alignment. (c) QP-DTW alignment. (d) DTW alignment. 
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(d) 

Fig. 13. Illustration of alignment by SEA, QP-DTW, and DTW of two similar traces (104,104) with shift 
of 20 seconds for Y. (a) Original traces. (b) SEA alignment. (c) QP-DTW alignment. (d) DTW alignment. 
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(d) 

Fig. 14. Illustration of alignment by SEA, QP-DTW, and DTW of two similar traces (s0287lrem, 
s0287lrem). (a) Original traces. (b) SEA alignment. (c) QP-DTW alignment. (d) DTW alignment. 
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(d) 

Fig. 15. Illustration of alignment by SEA, QP-DTW and DTW of two similar traces (s0273lrem, 
s0273lrem).  (a) Original traces.  (b) SEA alignment.  (c) QP-DTW alignment.  (d) DTW alignment. 
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Fig. 13 shows the case of two plots of the same record with 1,000 samples of the time series rec.104 
and 2,000 samples of the same time series with a shift of 20 seconds for Y. Fig. 13(a) presents the 
original time series. Each series is composed of different number of periods which are phase shifted. 
The Y signal presents also the problem of noise. The alignment performed by the SEA method is 
presented in Fig. 13(b). We see that SEA fails facing the problems of different amplitude scales and 
phase shift. Fig. 13(c) presents the alignment done by QP-DTW. It shows that our method resolve all 
the problems previously cited. The alignment done by DTW is presented in Fig. 13(d). We see that 
DTW fails again facing the problems of phase shift and noise. The numerical results indicate a high 
correlation and a low PRD for QP-DTW, a very low correlation and a high PRD for SEA and an average 
PRD and correlation for DTW. 

 
6.2 Comparison of Similar Traces of the PTB Diagnostic ECG Database 
 

Fig. 14 shows the case of two plots of the same record with 1,000 samples of the time series 
“s0287lrem” from the PTB Diagnostic ECG Database [18] for X and 1,200 samples of the same time 
series. The time series are phase shifted. The visual inspection and the numerical results indicate that 
the alignment done by QP-DTW is much better than the alignment done by SEA and DTW. 
Specifically, it can be noticed in this particular case that the SEA method deals weakly when we have 
one cycle in series X and two cycles in series Y, whereas the proposed QP-DTW deals much better with 
this complex case. 

Fig. 15 shows the case of two plots of the same record with 2,000 samples of the time series 
“s0273lrem” from the PTB Diagnostic ECG Database for X and 3,000 samples of the same time series 
for Y. The visual inspection of the Fig. 15 shows that QP-DTW has done a good alignment, contrary to 
DTW which fails completely and to SEA which shows some weakness. In Table 3, the numerical results 
confirm this fact. 

 
Table 3. Comparative table of the methods DTW, SEA, and QP-DTW concerning similar time series of 
Figs. 14–15 from the PTB Diagnostic ECG Database 

ECG 
segments 

DTW SEA QP-DTW                      

PRD% Corr Mean PRD% Mean Corr Mean PRD% Mean Corr 

(s0287, s0287) 43.18 0.9052 83.20 0.6433 27.97 0.9716 

(s0273, s0273) 47.27 0.8825 60.10 0.8117 26.91 0.9673 

 
 

6.3 Comparison of Dissimilar Time Series 
 

Fig. 16 shows the case of two plots from two different records with 2,000 samples of the time series 
rec.103 for X and 2,000 samples of the time series rec.123 for Y and a shift of 40 seconds for Y. The 
visual inspection of the figure shows that the original time series and the reconstructed time series by 
QP-DTW are detached. The numerical results in Table 4 indicate a very low correlation and a very high 
PRD in favor of QP-DTW. This proves that our method is perfectly capable of differentiating dissimilar 
time series. 
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Fig. 16. Illustration of alignment by SEA, QP-DTW and DTW of two different traces (103,123) with 
shift of 40 seconds for Y. (a) Original traces. (b) SEA alignment. (c) QP-DTW alignment. (d) DTW 
alignment. 
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(a) 
 

           

(b) 
 

             

(c) 
 

 

(d) 
Fig. 17. Illustration of alignment by SEA, QP-DTW and DTW of two different traces (100,112) with 
shift of 50 seconds for Y. (a) Original traces. (b) SEA alignment. (c) QP-DTW alignment. (d) DTW 
alignment. 
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Fig. 18. Correlation factor as a function of time series length for DTW, SEA, and QP-DTW from 
rec.118 (MITBIH) with shift of 35 seconds for Y. 

 

 
Fig. 19. PRD factor as a function of time series length (samples) for DTW, SEA, and QP-DTW from 
rec.118 (MITBIH) with shift of 35 seconds for Y. 

 
Table 4. Comparative table of the methods DTW, SEA, and QP-DTW concerning dissimilar time series 
of Figs. 16–17 

ECG 
segments 

DTW SEA QP-DTW                      
PRD% Corr Mean PRD% Mean Corr Mean PRD% Mean Corr 

(103, 123) 57.24 0.8472 51.67 0.9673 69.01 0.8953 

(100, 112) 80.25 0.7034 62.58 0.8709 88.38 0.5866 

 
 
Fig. 17 shows two plots from two different records with 1,000 samples of the time series rec.100 for X 

and 2,000 samples of the time series rec.112 for Y and a shift of 50 seconds for Y. The visual inspection 
and the numerical results indicate that QP-DTW done the best misalignment. 

Figs. 18 and 19 show respectively the changes in the correlation and in the PRD of the three methods 
in relation to the size of time series. Fig. 18 indicates that the correlation of QP-DTW is the best and 
that it is always close to 1. Fig. 19 indicates that the PRD of QP-DTW is always the lowest despite 
increasing data size. 
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7. Conclusion 

In this work, we have proposed a novel alignment method for quasi-periodic time series. The 
proposed QP-DTW can be seen as an upgrade of the classical DTW that handles alignment of very 
complex time series, more effectively than the existing SEA method, quantitatively and qualitatively. 
Therefore, the proposed method would be a good alternative for time series applications, such as data 
mining, pattern recognition, search/retrieval, motif discovery and classification. 
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