• Title/Summary/Keyword: Time-series Model

Search Result 2,673, Processing Time 0.031 seconds

Multiple Model Prediction System Based on Optimal TS Fuzzy Model and Its Applications to Time Series Forecasting (최적 TS 퍼지 모델 기반 다중 모델 예측 시스템의 구현과 시계열 예측 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.101-109
    • /
    • 2008
  • In general, non-stationary or chaos time series forecasting is very difficult since there exists a drift and/or nonlinearities in them. To overcome this situation, we suggest a new prediction method based on multiple model TS fuzzy predictors combined with preprocessing of time series data, where, instead of time series data, the differences of them are applied to predictors as input. In preprocessing procedure, the candidates of optimal difference interval are determined by using con-elation analysis and corresponding difference data are generated. And then, for each of them, TS fuzzy predictor is constructed by using k-means clustering algorithm and least squares method. Finally, the best predictor which minimizes the performance index is selected and it works on hereafter for prediction. Computer simulation is performed to show the effectiveness and usefulness of our method.

  • PDF

Test of Homogeneity for Panel Bilinear Time Series Model (패널 중선형 시계열 모형의 동질성 검정)

  • Lee, ShinHyung;Kim, SunWoo;Lee, SungDuck
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.521-529
    • /
    • 2013
  • The acceptance of the test of the homogeneity for panel time series models allows for the pooling of the series to achieve parsimony. In this paper, we introduce a panel bilinear time series model as well as derive the stationary condition and the limiting distribution of the test statistic of the homogeneity test for the model. For the applications study, we use Korea Mumps data from January 2001 to December 2008. Finally, we perform test of homogeneity for the panel data with 8 independent bilinear time series.

Regression Quantile Estimators of a Nonlinear Time Series Regression Model

  • Kim Tae Soo;Hur Sun;Kim Hae Kyung
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.13-15
    • /
    • 2000
  • In this paper, we deal with the asymptotic properties of the regression quantile estimators in the nonlinear time series regression model. For the sinusodial model which frequently appears fer a time series analysis, we study the strong consistency and asymptotic normality of regression quantile ostinators.

  • PDF

A Study on Improving Prediction Accuracy by Modeling Multiple Similar Time Series (다중 유사 시계열 모델링 방법을 통한 예측정확도 개선에 관한 연구)

  • Cho, Young-Hee;Lee, Gye-Sung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.137-143
    • /
    • 2010
  • A method for improving prediction accuracy through processing time series data has been studied in this research. We have designed techniques to model multiple similar time series data and avoided the shortcomings of single prediction model. We predicted the future changes by effective rules derived from these models. The methods for testing prediction accuracy consists of three types: fixed interval, sliding, and cumulative method. Among the three, cumulative method produced the highest accuracy.

Extended Constant Conditional Correlation (ECCC) Model for Multivariate GARCH Time Series: an Illustration (다변량 GARCH 모형의 CCC 및 ECCC 비교분석)

  • Lee, Seung Yeon;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.7
    • /
    • pp.1219-1228
    • /
    • 2014
  • Constant conditional correlation (CCC) is frequently employed for parsimony in the field of multivariate GARCH time series. An extended-CCC (ECCC) model is further developed in order to allow interactions between multivariate volatilities. The paper introduces both CCC model and ECCC model to the domestic financial time series. The CCC and ECCC models are fitted and then compared with each other through various multivatiate time series.

Prediction of Electricity Sales by Time Series Modelling (시계열모형에 의한 전력판매량 예측)

  • Son, Young Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.3
    • /
    • pp.419-430
    • /
    • 2014
  • An accurate prediction of electricity supply and demand is important for daily life, industrial activities, and national management. In this paper electricity sales is predicted by time series modelling. Real data analysis shows the transfer function model with cooling and heating days as an input time series and a pulse function as an intervention variable outperforms other time series models for the root mean square error and the mean absolute percentage error.

A Dynamic Correction Technique of Time-Series Data using Anomaly Detection Model based on LSTM-GAN (LSTM-GAN 기반 이상탐지 모델을 활용한 시계열 데이터의 동적 보정기법)

  • Hanseok Jeong;Han-Joon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.103-111
    • /
    • 2023
  • This paper proposes a new data correction technique that transforms anomalies in time series data into normal values. With the recent development of IT technology, a vast amount of time-series data is being collected through sensors. However, due to sensor failures and abnormal environments, most of time-series data contain a lot of anomalies. If we build a predictive model using original data containing anomalies as it is, we cannot expect highly reliable predictive performance. Therefore, we utilizes the LSTM-GAN model to detect anomalies in the original time series data, and combines DTW (Dynamic Time Warping) and GAN techniques to replace the anomaly data with normal data in partitioned window units. The basic idea is to construct a GAN model serially by applying the statistical information of the window with normal distribution data adjacent to the window containing the detected anomalies to the DTW so as to generate normal time-series data. Through experiments using open NAB data, we empirically prove that our proposed method outperforms the conventional two correction methods.

A Time Series-Based Statistical Approach for Trade Turnover Forecasting and Assessing: Evidence from China and Russia

  • DING, Xiao Wei
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.4
    • /
    • pp.83-92
    • /
    • 2022
  • Due to the uncertainty in the order of the integrated model, the SARIMA-LSTM model, SARIMA-SVR model, LSTM-SARIMA model, and SVR-SARIMA model are constructed respectively to determine the best-combined model for forecasting the China-Russia trade turnover. Meanwhile, the effect of the order of the combined models on the prediction results is analyzed. Using indicators such as MAPE and RMSE, we compare and evaluate the predictive effects of different models. The results show that the SARIMA-LSTM model combines the SARIMA model's short-term forecasting advantage with the LSTM model's long-term forecasting advantage, which has the highest forecast accuracy of all models and can accurately predict the trend of China-Russia trade turnover in the post-epidemic period. Furthermore, the SARIMA - LSTM model has a higher forecast accuracy than the LSTM-ARIMA model. Nevertheless, the SARIMA-SVR model's forecast accuracy is lower than the SVR-SARIMA model's. As a result, the combined models' order has no bearing on the predicting outcomes for the China-Russia trade turnover time series.

Statistical Inference for Space Time Series Model with Application to Mumps Data

  • Jeong, Ae-Ran;Kim, Sun-Woo;Lee, Sung-Duck
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.475-486
    • /
    • 2006
  • Space time series data can be viewed either as a set of time series collected simultaneously at a number of spatial locations or as sets of spatial data collected at a number of time points. The major purpose of this article is to formulate a class of space time autoregressive moving average (STARMA) model, to discuss some of the their statistical properties such as model identification approaches, some procedure for estimation and the predictions. For illustration, we apply this STARMA model to the mumps data. The data set of mumps cases consists of the number of cases of mumps reported from twelve states monthly over the years 1969-1988.

  • PDF

Nonlinear Behavior in Love Model with Discontinuous External Force

  • Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.64-71
    • /
    • 2016
  • This paper proposes nonlinear behavior in a love model for Romeo and Juliet with an external force of discontinuous time. We investigated the periodic motion and chaotic behavior in the love model by using time series and phase portraits with respect to some variable and fixed parameters. The computer simulation results confirmed that the proposed love model with an external force of discontinuous time shows periodic motion and chaotic behavior with respect to parameter variation.