Unlike the wavelet neural network, since a mother wavelet layer of the self-recurrent wavelet neural network (SRWNN) is composed of self-feedback neurons, it has the ability to store past information of the wavelet. Therefore we propose the prediction method for the nonlinear chaotic time series model using a SRWNN. The SRWNN model is learned for the modeling of a function such that the inputs arc known values of the time series and the output is the value in the future. The parameters of the network are tuned to minimize the difference between the nonlinear mapping of the chaotic time series and the output of SRWNN using the gradient-descent method for the adaptive backpropagation algorithm. Through the computer simulations, we demonstrate the feasibility and the effectiveness of our method for the prediction of the logistic map and the Mackey-Glass delay-differential equation as a nonlinear chaotic time series.
Recently several authors have introduced iterative methods for detecting time series outliers. Most of these methods are developed under the assumption that an underlying outlier-free model is known or can be identified. Since outliers can distort model identification or even make it impossible, we propose procedure begins with a descriptive data analysis of a time series using distance measures between two observations. Properties of the proposed test statistic are presented. To distinguish the type of an outlier are used transfer function models. An empirical example is given to illustrate the time series modeling procedure.
Temporal variation of groundwater levels in Jeju Island reveals time-delaying and dispersive process of recharge, mainly caused by the hydrogeological feature that thickness of the unsaturated zone is highly variable. Most groundwater flow models have limitations on delineating temporal variation of recharge, although it is a major component of the groundwater flow system. A new mathematical model was developed to generate time series of recharge from precipitation data. The model uses a convolution technique to simulate the time-delaying and dispersive process of recharge. The vertical velocity and the dispersivity are two parameters determining the time series of recharge for a given thickness of the unsaturated zone. The model determines two parameters by correlating the generated recharge time series with measured groundwater levels. The model was applied to observation wells of Jeju Island, and revealed distinctive variations of recharge depending on location of wells. The suggested model demonstrated capability of the convolution method in dealing with recharge undergoing the time-delaying and dispersive process. Therefore, it can be used in many groundwater flow models for generating a time series of recharge.
Journal of Korean Society for Atmospheric Environment
/
v.4
no.2
/
pp.72-81
/
1988
The typical ARIMA model which was developed by Box and Jenkins, was applied to the monthly $SO_2$ data collected at Seoungsoo and Oryudong in metropolitan area over five years, 1982 to 1986. To find out the changing pattern of $SO_2$ concentration, autocorrelation and partial autocorrelation analysis were undertaken. The three steps of time series model building were followed and the residual series was found to be a random white noise. The results of this study is summarized as follows. 1) The monthly $SO_2$ series was found to be a non-stationary series which which has a periodicity of 12 months. After eliminating the periodicity by differencing, the monthly $SO_2$ series became a stationary series. 2) The ARIMA seasonal model of the $SO_2$ was determined to be ARIMA $(1, 0, 0)(0, 1, 0,)_{12}$ model. 3) The model equations based on the prediction were: for Seoungsoodong: $Y_t = 0.5214Y_{t-1} + Y_{t-12} - 0.5214Y_{t-13} + a_t$ for Oryudong: $Y_t = 0.8549Y_{t-1} + Y_{t-12} - 0.8549Y_{t-13} + a_t$ 4) The validity of the model identified was checked by compairing the measured $SO_2$ values and one-month-ahead predicted values. The result of correlation and regression analysis is as follows. Seoungsoodong: $Y = 0.8710X + 0.0062 r = 0.8768$ Oryudong : $Y = 0.8758X + 0.0073 r = 0.9512$
The purpose of this study is to contribute to establishing the scientific policing policies through deriving the time series models that can forecast the occurrence of major crimes such as murder, robbery, burglary, rape, violence and identifying the occurrence of major crimes using the models. In order to achieve this purpose, there were performed the statistical methods such as Generation of Time Series Model(C) for identifying the forecasting models of time series, Generation of Time Series Model(C) and Sequential Chart of Time Series(N) for identifying the accuracy of the forecasting models of time series on the monthly incidence of major crimes from 2002 to 2010 using IBM PASW(SPSS) 19.0. The following is the result of the study. First, murder, robbery, rape, theft and violence crime's forecasting models of time series are Simple Season, Winters Multiplicative, ARIMA(0,1,1)(0,1,1), ARIMA(1,1,0 )(0,1,1) and Simple Season. Second, it is possible to forecast the short-term's occurrence of major crimes such as murder, robbery, burglary, rape, violence using the forecasting models of time series. Based on the result of this study, we have to suggest various forecasting models of time series continuously, and have to concern the long-term forecasting models of time series which is based on the quarterly, yearly incidence of major crimes.
Journal of Korean Society of Industrial and Systems Engineering
/
v.7
no.10
/
pp.47-51
/
1984
In many forecasting problem, there is little or no useful historical information available at the time the initial forecast is required, The propose of this paper is study on Bayesian Method in forecasting. I : Introduction. II : Bayesian estimation. III : Constant Model. IV : General time series Models. V : Conclusion. The Bayesian procedure are then used to revise parameter estimates when time series information is available, in this paper we give a general description of the bayesian approach and demonstrate the methodology with several specific cases.
Dried red peppers are a staple agricultural product used in Korean cuisine and as such, are an important aspect of agricultural producers' income. Correctly forecasting both their supply and demand situations and price is very important in terms of the producers' income and consumer price stability. The primary objective of this study was to compare the performance of time series forecasting models for dried red peppers in Korea. In this study, three models (an autoregressive model with exogenous variables [ARX], AR-exponential generalized autoregressive conditional heteroscedasticity [EGARCH], and ARX-EGARCH) are presented for forecasting the wholesale price of dried red peppers. As a result of the analysis, it was shown that the ARX model and ARX-EGARCH model, each of which adopt both the rolling window and the adding approach and use the agricultural cooperatives price as the exogenous variable, showed a better forecasting performance compared to the autoregressive model (AR)-EGARCH model. Based on the estimation methods and results, there was no significant difference in the accuracy of the estimation between the rolling window and adding approach. In the case of dried red peppers, there is limitation in building the price forecasting models with a market-structured approach. In this regard, estimating a forecasting model using only price data and identifying the forecast performance can be expected to complement the current pricing forecast model which relies on market shipments.
Concept drift detection on data stream is the major issue to maintain the performance of the machine learning model. Since the online stream is to be a function of time, the classical statistic methods are hard to apply. In particular case of seasonal time series, a novel window strategy with Fourier analysis however, gives a chance to adapt the classical methods on the series. We explore the KS-test for an adaptation of the periodic time series and show that this strategy handles a complicate time series as an ordinary tabular dataset. We verify that the detection with the strategy takes the second place in time delay and shows the best performance in false alarm rate and detection accuracy comparing to that of arbitrary window sizes.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.25
no.6_1
/
pp.537-543
/
2007
Since the GPS absolute positioning with pseudorange measurements can significantly be affected by the observation error, the time series analysis of the GPS receiver clock errors was performed in this study. From the estimated receiver clock errors, the time series model is generated, and constrained back in the absolute positioning process. One of the CORS (Continuously Operating Reference Stations) network is used to analyze the behavior of the receiver clock. The dominant part of the model is the linear trend during 24 hours, and the seasonal component is also estimated. After constraining the modeled receiver clock errors, the estimated position error compared to the published coordinates is improved from ${\pm}11.4\;m\;to\;{\pm}9.5\;m$ in 3D RMS.
n this research neural -based model was developed to forecast link travel times , And it is also compared wiht other time series forecasting models such as Box-Jenkins model, Kalman filter model. These models are validated to evaluate the accuracy of models with real time series data gathered by the license plate method. Neural network's convergency and generalization were investigated by modifying learning rate, momentum term and the number of hidden layer units. Through this experiment, the optimum configuration of the nerual network architecture was determined. Optimumlearining rate, momentum term and the number of hidden layer units hsow 0.3, 0.5, 13 respectively. It may be applied to DRGS(dynamic route guidance system) with a minor modification. The methods are suggested at the condlusion of this paper, And there is no doubt that this neural -based model can be applied to many other itme series forecating problem such as populationforecasting vehicel volume forecasting et .
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.