• Title/Summary/Keyword: Time-series Model

Search Result 2,673, Processing Time 0.036 seconds

LSTM-based Deep Learning for Time Series Forecasting: The Case of Corporate Credit Score Prediction (시계열 예측을 위한 LSTM 기반 딥러닝: 기업 신용평점 예측 사례)

  • Lee, Hyun-Sang;Oh, Sehwan
    • The Journal of Information Systems
    • /
    • v.29 no.1
    • /
    • pp.241-265
    • /
    • 2020
  • Purpose Various machine learning techniques are used to implement for predicting corporate credit. However, previous research doesn't utilize time series input features and has a limited prediction timing. Furthermore, in the case of corporate bond credit rating forecast, corporate sample is limited because only large companies are selected for corporate bond credit rating. To address limitations of prior research, this study attempts to implement a predictive model with more sample companies, which can adjust the forecasting point at the present time by using the credit score information and corporate information in time series. Design/methodology/approach To implement this forecasting model, this study uses the sample of 2,191 companies with KIS credit scores for 18 years from 2000 to 2017. For improving the performance of the predictive model, various financial and non-financial features are applied as input variables in a time series through a sliding window technique. In addition, this research also tests various machine learning techniques that were traditionally used to increase the validity of analysis results, and the deep learning technique that is being actively researched of late. Findings RNN-based stateful LSTM model shows good performance in credit rating prediction. By extending the forecasting time point, we find how the performance of the predictive model changes over time and evaluate the feature groups in the short and long terms. In comparison with other studies, the results of 5 classification prediction through label reclassification show good performance relatively. In addition, about 90% accuracy is found in the bad credit forecasts.

Analysis of Multivariate Financial Time Series Using Cointegration : Case Study

  • Choi, M.S.;Park, J.A.;Hwang, S.Y.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.1
    • /
    • pp.73-80
    • /
    • 2007
  • Cointegration(together with VARMA(vector ARMA)) has been proven to be useful for analyzing multivariate non-stationary data in the field of financial time series. It provides a linear combination (which turns out to be stationary series) of non-stationary component series. This linear combination equation is referred to as long term equilibrium between the component series. We consider two sets of Korean bivariate financial time series and then illustrate cointegration analysis. Specifically estimated VAR(vector AR) and VECM(vector error correction model) are obtained and CV(cointegrating vector) is found for each data sets.

  • PDF

Outlier detection in time series data (시계열 자료에서의 특이치 발견)

  • Choi, Jeong In;Um, In Ok;Choa, Hyung Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.907-920
    • /
    • 2016
  • This study suggests an outlier detection algorithm that uses quantile autoregressive model in time series data, eventually applying it to actual stock manipulation cases by comparing its performance to existing methods. Studies on outlier detection have traditionally been conducted mostly in general data and those in time series data are insufficient. They have also been limited to a parametric model, which is not convenient as it is complicated with an analysis that takes a long time. Thus, we suggest a new algorithm of outlier detection in time series data and through various simulations, compare it to existing algorithms. Especially, the outlier detection algorithm in time series data can be useful in finding stock manipulation. If stock price which had a certain pattern goes out of flow and generates an outlier, it can be due to intentional intervention and manipulation. We examined how fast the model can detect stock manipulations by applying it to actual stock manipulation cases.

BST-IGT Model: Synthetic Benchmark Generation Technique Maintaining Trend of Time Series Data

  • Kim, Kyung Min;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.31-39
    • /
    • 2020
  • In this paper, we introduce a technique for generating synthetic benchmarks based on time series data. Many of the data measured on IoT devices have a time series characteristic that measures numerical changes over time. However, there is a problem that it is difficult to model the data measured over a long period as generalized time series data. To solve this problem, this paper introduces the BST-IGT model. The BST-IGT model separates the entire data into sections that can be easily time-series modeled, collects the generated data into templates, and produces new synthetic benchmarks that share or modify characteristics based on them. As a result of making a new benchmark using the proposed modeling method, we could create a benchmark with multiple aspects by mixing the composite benchmark with the statistical features of the existing data and other benchmarks.

Model for the Spatial Time Series Data

  • Lim, Seongsik;Cho, Sinsup;Lee, Changsoo
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.1
    • /
    • pp.137-145
    • /
    • 1996
  • We propose a model which is useful for the analysis of the spatial time series data. The proposed model utilized the linear dependences across the spatial units as well as over time. Three stage model fitting procedures are suggested and the real data is analyzed.

  • PDF

Model reduction by the eigenvalue selected considering the error of the power series (멱급수 오차를 고려하여 선택된 고유치에 의한 모델 저차화 방법)

  • 김원호;최태호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.155-160
    • /
    • 1987
  • In this paper, the model reduction method of the linear time invariant continuous systems is proposed. The denominator of reduced order model is determined by the eigenvalue selected considering the error of the power series that exists between original system and reduced order system at each time moments. And the numerator of model is founded by the time moment matching method. The method suggested is compared with other various methods in examples.

  • PDF

Chaotic Behavior in a Dynamic Love Model with Different External Forces

  • Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.283-288
    • /
    • 2015
  • In this paper, we propose a dynamic mathematical model of love involving various external forces, in order to analyze the chaotic phenomena in a love model based on Romeo and Juliet. In addition, we investigate the nonlinear phenomena in a love model with external forces using time series and phase portraits. In order to describe nonlinear phenomena precisely using time series and phase portraits, we vary the type of external force, using models such as a sine wave, chopping wave, and square wave. We also apply various different parameters in the Romeo and Juliet model to acquire chaotic dynamics.

Short-Term Load Forecasting Using Multiple Time-Series Model Including Dummy Variables (더미변수(Dummy Variable)를 포함하는 다변수 시계열 모델을 이용한 단기부하예측)

  • 이경훈;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.8
    • /
    • pp.450-456
    • /
    • 2003
  • This paper proposes a multiple time-series model with dummy variables for one-hour ahead load forecasting. We used 11 dummy variables that were classified by day characteristics such as day of the week, holiday, and special holiday. Also, model specification and selection of input variables including dummy variables were made by test statistics such as AIC(Akaike Information Criterion) and t-test statistics of each coefficient. OLS (Ordinary Least Squares) method was used for estimation and forecasting. We found out that model specifications for each hour are not identical usually at 30% of optimal significance level, and dummy variables reduce the forecasting error if they are classified properly. The proposed model has much more accurate estimates in forecasting with less MAPE (Mean Absolute Percentage Error).

The Evaluation of the Annual Time Series Data for the Mean Sea Level of the West Coast by Regression Model (회귀모형에 의한 서해안 평균해면의 연시계열자료의 평가)

  • 조기태;박영기;이장춘
    • Journal of Environmental Science International
    • /
    • v.9 no.1
    • /
    • pp.19-25
    • /
    • 2000
  • As the tideland reclamation is done on a large scale these days, construction work is active in the coastal areas. Facilities in the coastal areas must be built with the tide characteristics taken into consideration. Thus the tide characteristics affect the overall reclamation plan. The analysis of the tide data boils down to a harmonic analysis of the hourly changes of long-term tide data and extraction of unharmonic coefficients from the results. Since considerable amount of tide data of the West Coast are available, the existing data can be collected and can be used to obtain the temporal changes of the tide by being fitted into the tide prediction model. The goal of this thesis lies in assessing whether the mean sea level used in the field agrees with the analysis results from the long-term observation data obtained with their homogeneity guaranteed. To achieve this goal, the research was conducted as follows. First the present conditions of the observation stations, the land level standard, and the sea level standard were analyzed to set up a time series model formula for representing them. To secure the homogeneity of the time series, each component was separated. Lastly the mean sea level used in the field was assessed based on the results obtained form the analysis of the time series.

  • PDF

Estimation of the Number of Korean Cattle Using ARIMA Model (ARIMA 모형을 이용한 한육우 사육두수 추정)

  • Jeon, Sang-Gon;Park, Han-Ul
    • Journal of agriculture & life science
    • /
    • v.45 no.5
    • /
    • pp.115-126
    • /
    • 2011
  • This paper estimates the number of Korean cattle using time-series ARIMA model. This study classifies the structure of the number of cattle into six indexes to reflect the characteristics of cattle. This study apply ARIMA model to these six indexes according to Box-Jenkins procedure to identify, estimate and predict. The rates of slaughter for aged female and aged male cow is analyzed as non-stationary time series which has unit roots and other 4 indexes is analyzed as stationary time series. The differencing is applied to get rid of non-stationarity for the non-stationary time series. The results show that the number of cattle will be reduced from 2012 as a higher point and rebounded from 2018 as a lower point.