1 |
Verma, S., Kawamoto, Y., Fadlullah, Z. M., Nishiyama, H., & Kato, N., "A survey on network methodologies for real-time analytics of massive IoT data and open research issues", IEEE Communications Surveys & Tutorials. 19(3), pp. 1457-1477, 2017. DOI: 10.1109/COMST.2017.2694469
DOI
|
2 |
Borgomeo, E., Farmer, C. L., & Hall, J. W., "Numerical rivers: A synthetic streamflow generator for water resources vulnerability assessments", Water Resources Research. 51(7), pp. 5382-5405, 2015. DOI: 10.1109/COMST.2017.2694469
DOI
|
3 |
Arlitt, M., Marwah, M., Bellala, G., Shah, A., Healey, J., & Vandiver, B., "Iotabench: an internet of things analytics benchmark", Proceedings of the 6th ACM/SPEC International Conference on Performance Engineering, pp. 133-144, January 2015. DOI: 10.1145/2668930.2688055
|
4 |
Dua, D. and Graff, C.,"UCI Machine Learning Repository", [http://archive.ics.uci.edu/ml], Irvine, CA: University of California, School of Information and Computer Science, 2019.
|
5 |
Aljawarneh, S., Radhakrishna, V., Kumar, P. V., & Janaki, V., "A similarity measure for temporal pattern discovery in time series data generated by IoT", 2016 International conference on engineering & MIS (ICEMIS), pp. 1-4. September 2016. 10.1109/ICEMIS.2016.7745355
|
6 |
Xu, X., Huang, S., Chen, Y., Browny, K., Halilovicy, I., & Lu, W., "TSAaaS: Time series analytics as a service on IoT", 2014 IEEE International Conference on Web Services, pp. 249-256. June 2014. DOI: 10.1109/ICWS.2014.45
|
7 |
Deb, C., Zhang, F., Yang, J., Lee, S. E., & Shah, K. W., "A review on time series forecasting techniques for building energy consumption", Renewable and Sustainable Energy Reviews. 74, pp. 902-924, 2017. DOI: 10.1016/j.rser.2017.02.085
DOI
|
8 |
De Livera, A. M., Hyndman, R. J., & Snyder, R. D., "Forecasting time series with complex seasonal patterns using exponential smoothing", J American Statistical Association. 106(496), pp. 1513-1527, 2011. DOI: 10.1198/jasa.2011.tm09771
DOI
|
9 |
Hyndman, R., Koehler, A. B., Ord, J. K., & Snyder, R. D., "Forecasting with exponential smoothing: the state space approach", Springer Science & Business Media, 2008. DOI: 10.1198/jasa.2011.tm09771
|
10 |
Jain, Garima, and Bhawna Mallick, "A study of time series models ARIMA and ETS.", Available at SSRN 2898968, 2017.
|
11 |
Choi, ByoungSeon, "ARMA model identification", Springer Science & Business Media, 2012.
|
12 |
Fan, S., & Hyndman, R. J., "Short-term load forecasting based on a semi-parametric additive model", IEEE Transactions on Power Systems. 27(1), pp. 134-141, August 2011. DOI: 10.1109/TPWRS.2011.2162082
DOI
|
13 |
Contreras, J., Espinola, R., Nogales, F. J., & Conejo, A. J., "ARIMA models to predict next-day electricity prices", IEEE transactions on power systems. 18(3), pp. 1014-1020, August 2003. DOI: 10.1109/TPWRS.2002.804943
DOI
|
14 |
Singh, S. N., and Abheejeet Mohapatra, "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting", Renewable energy. 136, pp. 758-768, 2019. DOI: 10.1016/j.renene.2019.01.031
DOI
|
15 |
Farhath, Z. A., Arputhamary, B., & Arockiam, L., "A Survey on ARIMA Forecasting Using Time Series Model", Int. J. Comput. Sci. Mobile Comput. 5, pp. 104-109, August 2016. DOI: 10.3390/sym11020240
|
16 |
Drago, Carlo, and Elisabetta Massa, "Measuring and Forecasting Financial Advisory Demand using a Hybrid ETS-ANN Model", BORDERS WITHOUT BORDERS:: Systemic frameworks and their applications, 2019.
|