• 제목/요약/키워드: Time-invariant Linear system

검색결과 199건 처리시간 0.027초

Absolute Stability Margins in Missile Guidance Loop

  • Kim, Jong-Ju;Lyou, Joon
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권3호
    • /
    • pp.460-466
    • /
    • 2008
  • This paper deals with the stability analysis of a missile guidance loop employing an integrated proportional navigation guidance law. The missile guidance loop is formulated as a closed-loop control system consisting of a linear time-invariant feed-forward block and a time-varying feedback gain. Based on the circle criterion, we have defined the concept of absolute stability margins and obtained the gain and phase margins for the system assuming 1 st order missile/autopilot dynamics. The correlation between the absolute stability margins and the margins derived from the frozen system analysis is also discussed.

Dynamic Characterization of Noise and Vibration Transmission Paths in Linear Cyclic Systems (I)-Theory-

  • Kim, Han-Jun;Cho, Young-Man
    • Journal of Mechanical Science and Technology
    • /
    • 제14권10호
    • /
    • pp.1051-1060
    • /
    • 2000
  • Linear cyclic systems (LCS's) are a class of systems whose dynamic behavior changes cyclically. Such cyclic behavior is ubiquitous in systems with fundamentally repetitive motions (e. g. all rotating machinery). Yet, the knowledge of the noise and vibration transmission paths in LCS's is quite limited due to the time-varying nature of their dynamics. The first part of this two-part paper derives a generic expression that describes how the noise and/or vibration are transmitted between two (or multiple) locations in the LCS's. An analysis via the Fourier series and Fourier transform (FT) plays a major role in deriving this expression that turns out to be transfer function dependent upon the cycle position of the system. The cyclic nature of the LCS' transfer functions is shown to generate a series of amplitude modulated input signals whose carrier frequencies are harmonic multiples of the LCS' fundamental frequency. Applicability of signal processing techniques used in the linear time-invariant systems (LTIS's to the general LCSs is also discussed. Then, a criterion is proposed to determine how well a LCS can be approximated as a LTIS. In Part II, experimental validation of the analyses carried out in Part I is provided.

  • PDF

시변 지연시간을 갖는 이산 구간 시변 시스템의 시변 불확실성의 안정범위 (Stability Bound for Time-Varying Uncertainty of Time-varying Discrete Interval System with Time-varying Delay Time)

  • 한형석
    • 한국항행학회논문지
    • /
    • 제21권6호
    • /
    • pp.608-613
    • /
    • 2017
  • 본 논문에서는 시변 지연시간이 있는 선형 이산 구간 시변 시스템의 지연 상태변수에 존재하는 불확실성 안정범위에 관한 것을 다룬다. 고려된 시스템은 지연 없는 상태변수에 대한 시스템 행렬이 구간범위에서 시변으로 변동하고, 지연 시간이 구간범위 내에서 시변인 지연 상태변수에 대하여 비구조화된 불확실성이 시변으로 존재하는 시스템이다. 기존의 많은 연구들이 시변에 대한 부분을 고려하지 못하고 시불변 경우에 대하여 얻어진 것에 반하여, 본 논문에서는 모든 요소를 시변으로 고려하여 새로운 안정범위를 도출하였다. 새로운 안정범위는 적용 가능한 시스템에 대한 제한이 없는 것으로 그 효용성이 기존의 결과 보다 우수하다. 제안된 범위는 복잡한 선형행렬부등식 혹은 리아프노프 방정식의 상한 해 한계를 이용하는 복잡한 과정이 필요하지 않다. 수치예제를 통하여 제안된 결과가 기존의 결과들을 포함할 수 있음을 보이고, 이들 보다 확장성과 효용성이 우수함을 확인한다.

디스크립터 시스템을 위한 혼합 $H_{2}/H_{\infty}$제어기의 설계 (Mixed $H_{2}/H_{\infty}$ Controller Design for Descriptor Systems)

  • Choe, Yeon-Wook
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권7호
    • /
    • pp.483-490
    • /
    • 2004
  • The descriptor system model has a high ability in representing dynamical systems. It can preserve physical parameters in the coefficient matrices, and describe the dynamic part, static part, and even the improper part of the system in the same form. The design of mixed $H_{2}/H_{\infty}$ controllers for linear time-invariant descriptor systems is considered in this paper. Firstly, an $H_2$ and $H_{\infty}$ synthesis problems fur a descriptor system are presented separately in terms of linear matrix inequalities (LMIs) based on the bounded real lemma. Then, we show that the existence of a mixed $H_2/H_{\infty}$ controller by which the $H_2$ norm of the second channel is minimized while keeping the $H_2$ norm bound of the first channel less than ${\gamma}$, is reduced to the linear objective minimization problem. The class of desired controllers that are assumed to have the same structure as the plant is parameterized by using the linearizing change of variables.

퍼지 PID제어기를 이용한 비선형 유압시스템의 제어 (Nonlinear Hydraulic System Control using Fuzzy PID Controller)

  • 김인환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.583-592
    • /
    • 1999
  • In order to control systems which contain nonlinearities control strategies must deal with the effects of them. Since most of control methods based on system mathematical models have been mainly developed focused on stability robustness against nonlinearities or uncertainties under the assumption that controlled systems are linear time invariant they have certain amount of limita-tions to smartly improve control perfomances of systems disturbed by nonlinearities or uncertainties. In this paper the fuzzy PID control law is suggested which can improve control performances of the nonlinear heavy load hydraulic systems disturbed by nonlinearities and uncertainties. Although the derivation process is based on the design process similar to general fuzzy logic con-troller resultant control law has analytical forms with time varying PID gains rather than linguis-tic forms so that implementation using commn-used versatile microprocessors can be achieved easily and effectively in real-time control aspect.

  • PDF

광 픽업 장치의 H${\infty}$이산시간 서보제어 (H${\infty}$discrete-time servo control of optical pick-ups)

  • 임승철;김윤영
    • 소음진동
    • /
    • 제6권4호
    • /
    • pp.521-528
    • /
    • 1996
  • Recently, higher speed optical disk drives including computer CD-ROM drives tend to be increasingly demanded to read or write the enormous volume of digital data. To this end, both structure and controller designs of the optical pick-ups should be improved concurrently. In this paper, the pick-up during auto-focusing motion is mathematically modelled retaining all its peculiar features. The model turns out a linear time invariant system suitable for a control design namedH${\infty}$ which ensures robust stability in the presence of system uncertainties. Numerical simulations are performed to demonstrate the robustness with appropriate performance specifications being satisfied. In addition, as the implementation issue of it, procedures of temporal discretization as well as model reduction of the controller are also addressed.

  • PDF

Autopilot Design for Agile Missile with Aerodynamic Fin and Thrust Vecotring Control

  • Lee, Ho-Chul;Choi, Yong-Seok;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.525-530
    • /
    • 2003
  • This paper is concerned with a control allocation strategy using the dynamic inversion which generates the nominal control input trajectories, and autopilot design using the time-varying control technique which is time-varying version of pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. Dynamic inversion can decide the amount of the deflection of each control effector, aerodynamic fin and thrust vectoring control, to extract the maximum performance by combining the action of them. Time-varying control technique for autopilot design enhance the robustness of the tracking performance for a reference command. Nonlinear simulations demonstrates the dynamic inversion provides the effective nominal control input trajectories to achieve the angle of attack command, and time-varying control technique exhibits good robustness for a wide range of angle of attack.

  • PDF

Recursive Optimal State and Input Observer for Discrete Time-Variant Systems

  • Park, Youngjin;J.L.Stein
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제1권2호
    • /
    • pp.113-120
    • /
    • 1999
  • One of the important challenges facing control engineers in developing automated machineryis to be able to monitor the machines using remote sensors. Observrs are often used to reconstruct the machine variables of interest. However, conventional observers are unalbe to observe the machine variables when the machine models, upon which the observers are based, have inputs that cannot be measured. Since this is often the case, the authors previsously developed a steady-state optimal state and input observer for time-invariant systems [1], this paper extends that work to time-variant systems. A recursive observer, similar to a Kalman-Bucy filter, is developed . This optimal observer minimizes the trace of the error variance for discrete , linear , time-variant, stochastic systems with unknown inputs.

  • PDF

A servo design method for MIMO Wiener systems with nonlinear uncertainty

  • Kim, Sang-Hoon;Kunimatsu, Sadaaki;Fujii, Takao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1960-1965
    • /
    • 2005
  • This paper presents theory for stability analysis and design of a servo system for a MIMO Wiener system with nonlinear uncertainty. The Wiener system consists of a linear time-invariant system(LTI) in cascade with a static nonlinear part ${\psi}$(y) at the output. We assume that the uncertain static nonlinear part is sector bounded and decoupled. In this research, we treat the static nonlinear part as multiplicative uncertainty by dividing the nonlinear part ${\psi}$(y) into ${\phi}$(y) := ${\psi}$(y)-y and y, and then we reduce this stabilizing problem to a Lur'e problem. As a result, we show that the servo system with no steady state error for step references can be constructed for the Wiener system.

  • PDF

잡음하에서의 적응관측자 및 적응식별기에 관한 연구 (A Study on the Adaptive Observer/Adaptive Identifier in the Presence of Noise)

  • 최종호;남석우
    • 대한전기학회논문지
    • /
    • 제39권1호
    • /
    • pp.83-91
    • /
    • 1990
  • An adaptive observer which is applicable to discrete linear time invariant systems of ARMA type in the presence of noise is proposed. It first estimates the system parameters of the MA type by applying only the system input to the observer. Then it estimates the output which corresponds to the output of the system without any noise. This is a special case of Suzuki's adaptive observer. This estimated output is applied to Suzuki's adaptive observer to estimate the system parameters of ARMA type and the states. The proposed method can make the estimate errors of the system parameters sufficiently small even in the presence of noise in the system. It can also make the estimate errors of the states of the system sufficiently small when there is no process noise. These properties of the proposed adaptive observer is certified by computer simulation.

  • PDF