• Title/Summary/Keyword: Time-invariant

Search Result 637, Processing Time 0.03 seconds

Time Delay Estimation of Two Signals in Wavelet Transform Domain (WT 평면에서의 두 신호 시지연 추정)

  • Kim, Jae-Kuk;Lee, Young-Seok;Kim, Sung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.5-10
    • /
    • 1997
  • In this paper, a new time delay estimation algorithm, WTD-LMSTDE was proposed. This method has great improvement in convergence rate relative to the time domain approach by decreasing the eigen value spread of input signal autocorrelation matrix. The performance of the algorithm was evaluated for the cases of time invariant time delay and time varying time delay. In the case of time invariant time delay, the estimation accuracy of WTD-LMSTDE was better than that of LMSTDE from 3.3% to 12.5% with respect to SNR. In the case of time varying time delay, the mean error power of WTD-LMSTDE in linear increased delay environment was decreased about 2.4dB compared to that of LMSTDE under noise-free condition. As a result, we showed that the performance of WTD-LMSTDE is better than of LMSTDE.

  • PDF

Implementation of System Retrieving Multi-Object Image Using Property of Moments (모멘트 특성을 이용한 다중 객체 이미지 검색 시스템 구현)

  • 안광일;안재형
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.454-460
    • /
    • 2000
  • To retrieve complex data such as images, the content-based retrieval method rather than keyword based method is required. In this paper, we implemented a content-based image retrieval system which retrieves object of user query effectively using invariant moments which have invariant properties about linear transformation like position transition, rotation and scaling. To extract the shape feature of objects in an image, we propose a labeling algorithm that extracts objects from an image and apply invariant moments to each object. Hashing method is also applied to reduce a retrieval time and index images effectively. The experimental results demonstrate the high retrieval efficiency i.e precision 85%, recall 23%. Consequently, our retrieval system shows better performance than the conventional system that cannot express the shale of objects exactly.

  • PDF

A Genetic Algorithm Based Source Encoding Scheme for Distinguishing Incoming Signals in Large-scale Space-invariant Optical Networks

  • Hongki Sung;Yoonkeon Moon;Lee, Hagyu
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.151-157
    • /
    • 1998
  • Free-space optical interconnection networks can be classified into two types, space variant and space invariant, according to the degree of space variance. In terms of physical implementations, the degree of space variance can be interpreted as the degree of sharing beam steering optics among the nodes of a given network. This implies that all nodes in a totally space-invariant network can share a single beam steering optics to realize the given network topology, whereas, in a totally space variant network, each node requires a distinct beam steering optics. However, space invariant networks require mechanisms for distinguishing the origins of incoming signals detected at the node since several signals may arrive at the same time if the node degree of the network is greater than one. This paper presents a signal source encoding scheme for distinguishing incoming signals efficiently, in terms of the number of detectors at each node or the number of unique wavelengths. The proposed scheme is solved by developing a new parallel genetic algorithm called distributed asynchronous genetic algorithm (DAGA). Using the DAGA, we solved signal distinction schemes for various network sizes of several topologies such as hypercube, the mesh, and the de Brujin.

  • PDF

Binary Classification Method using Invariant CSP for Hand Movements Analysis in EEG-based BCI System

  • Nguyen, Thanh Ha;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.178-183
    • /
    • 2013
  • In this study, we proposed a method for electroencephalogram (EEG) classification using invariant CSP at special channels for improving the accuracy of classification. Based on the naive EEG signals from left and right hand movement experiment, the noises of contaminated data set should be eliminate and the proposed method can deal with the de-noising of data set. The considering data set are collected from the special channels for right and left hand movements around the motor cortex area. The proposed method is based on the fit of the adjusted parameter to decline the affect of invariant parts in raw signals and can increase the classification accuracy. We have run the simulation for hundreds time for each parameter and get averaged value to get the last result for comparison. The experimental results show the accuracy is improved more than the original method, the highest result reach to 89.74%.

Affine-Invariant Image normalization for Log-Polar Images using Momentums

  • Son, Young-Ho;You, Bum-Jae;Oh, Sang-Rok;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1140-1145
    • /
    • 2003
  • Image normalization is one of the important areas in pattern recognition. Also, log-polar images are useful in the sense that their image data size is reduced dramatically comparing with conventional images and it is possible to develop faster pattern recognition algorithms. Especially, the log-polar image is very similar with the structure of human eyes. However, there are almost no researches on pattern recognition using the log-polar images while a number of researches on visual tracking have been executed. We propose an image normalization technique of log-polar images using momentums applicable for affine-invariant pattern recognition. We handle basic distortions of an image including translation, rotation, scaling, and skew of a log-polar image. The algorithm is experimented in a PC-based real-time vision system successfully.

  • PDF

A Study on the Automatic Inspection System using Invariant Moments Algorithm with the Change of Size and Rotation (크기와 회전 변화에 불변 모멘트 알고리즘을 이용한 자동 검사 시스템에 관한 연구)

  • Lee, Yong-Joong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.37-43
    • /
    • 2004
  • The purpose of this study is to develop a practical image inspection system that could recognize it correctly, endowing flexibility to the productive field, although the same object for work will be changed in the size and rotated. In this experiment, it selected a fighter, rotating the direction from $30^{\circ}$ to $45^{\circ}$ simultaneously while changing the size from 1/4 to 1/16, as an object inspection without using another hardware for exclusive image processing. The invariant moments, Hu has suggested, was used as feature vector moment descriptor. As a result of the experiment, the image inspection system developed from this research was operated in real-time regardless of the chance of size and rotation for the object inspection, and it maintained the correspondent rates steadily above from 94% to 96%. Accordingly, it is considered as the flexibility can be considerably endowed to the factory automation when the image inspection system developed from this research is applied to the productive field.

Rotation Invariant Tracking-Learning-Detection System (회전에 강인한 실시간 TLD 추적 시스템)

  • Choi, Wonju;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.865-873
    • /
    • 2016
  • In recent years, Tracking-Learning-Detection(TLD) system has been widely used as a detection and tracking algorithm for vision sensors. While conventional algorithms are vulnerable to occlusion, and changes in illumination and appearances, TLD system is capable of robust tracking by conducting tracking, detection, and learning in real time. However, the detection and tracking algorithms of TLD system utilize rotation-variant features, and the margin of tracking error becomes greater when an object makes a full out-of-plane rotation. Thus, we propose a rotation-invariant TLD system(RI-TLD). we propose a simplified average orientation histogram and rotation matrix for a rotation inference algorithm. Experimental results with various tracking tests demonstrate the robustness and efficiency of the proposed system.

Fast Computation of Zernike Moments Using Three Look-up Tables

  • Kim, Sun-Gi;Kim, Whoi-Yul;Kim, Young-Sum;Park, Chee-Hang
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.156-161
    • /
    • 1997
  • Zernike moments have been one of the most commonly used feature vectors for recognizing rotated patterns due to its rotation invariant characteristics. In order to reduce its expensive computational cost, several methods have been proposed to lower the complexity. One of the methods proposed by mukundan and K. R. Ramakrishnan[1], however, is not rotation invariant. In this paper, we propose another method that not only reduces the computational cost but preserves the rotation invariant characteristics. In the experiment, we compare our method with others, in terms of computing time and the accuracy of moment feature at different rotational angle of an object in image.

  • PDF

Improvement of ASIFT for Object Matching Based on Optimized Random Sampling

  • Phan, Dung;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • v.9 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • This paper proposes an efficient matching algorithm based on ASIFT (Affine Scale-Invariant Feature Transform) which is fully invariant to affine transformation. In our approach, we proposed a method of reducing similar measure matching cost and the number of outliers. First, we combined the Manhattan and Chessboard metrics replacing the Euclidean metric by a linear combination for measuring the similarity of keypoints. These two metrics are simple but really efficient. Using our method the computation time for matching step was saved and also the number of correct matches was increased. By applying an Optimized Random Sampling Algorithm (ORSA), we can remove most of the outlier matches to make the result meaningful. This method was experimented on various combinations of affine transform. The experimental result shows that our method is superior to SIFT and ASIFT.

An Algorithm of Feature Map Updating for Localization using Scale-Invariant Feature Transform (자기 위치 결정을 위한 SIFT 기반의 특징 지도 갱신 알고리즘)

  • Lee, Jae-Kwang;Huh, Uk-Youl;Kim, Hak-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.141-143
    • /
    • 2004
  • This paper presents an algorithm in which a feature map is built and localization of a mobile robot is carried out for indoor environments. The algorithm proposes an approach which extracts scale-invariant features of natural landmarks from a pair of stereo images. The feature map is built using these features and updated by merging new landmarks into the map and removing transient landmarks over time. And the position of the robot in the map is estimated by comparing with the map in a database by means of an Extended Kalman filter. This algorithm is implemented and tested using a Pioneer 2-DXE and preliminary results are presented in this paper.

  • PDF