• Title/Summary/Keyword: Time-Temperature Parameter

Search Result 575, Processing Time 0.033 seconds

Accelerated Life Prediction on Tensile Strength of Oil Resistance HNBR (내유성 HNBR 고무의 인장강도 성능에 대한 가속수명예측)

  • Kim, Kyung Pil;Lee, Yong Seok;Yeo, Yong Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.233-238
    • /
    • 2020
  • Although the interest in NBR has been increasing due to the recent developments of the aerospace sector, there are few reports on HNBR's aeronautical oil, particularly evaluations of the accelerated life of harsh factors. In this study, the tensile strength was adopted as a performance evaluation factor to evaluate the accelerated life of HNBR used in the aviation field. The accelerated stress factor affecting the performance-aging characteristics was defined as temperature. The acceleration stress factor was determined to be temperature, and the result of measuring the tensile strength change over time. The sample for the acceleration condition was taken out of the oven for a certain period and left at room temperature for 24 hours. The dumbbell type 3 specimens were manufactured according to the standard specified in KS M 6518 and were measured the tensile strength, a factor in accelerated life evaluations. The activation energy was 0.895, and the shape parameter was 1.152 using the Arrhenius model. The characteristic life obtained from the tensile strength of the HNBR specimen immersed in aviation oil at 20℃ was 272,256 hours; the average life was 258,965 hours, and the B10 life was 38,624 hours.

Analysis of Abnormal Values Obtained from National Groundwater Monitoring Stations (국가지하수 관측소 측정자료의 이상값 분석)

  • Yi Myeong-Jae;Lee Jin-Yong;Kim Gyoo-Bum;Won Jong-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.65-74
    • /
    • 2005
  • National groundwater monitoring stations have been managed throughout the country by Korea Water Resources Corporation (KOWACO) in order to monitor variations in quantity and quality of groundwater resources. A multi-sensor installed in each monitoring station well measures groundwater level, water temperature and electrical conductivity every six hours and the logged data are automatically transmitted to a host computer in KOWACO. Meanwhile despite regular station inspection and replacement of deteriorate or broken devices, abnormal values or outliers often occur due to intrinsic limitations of automatic monitoring and transmission. Thus prompt recognition and measures to these values are essentially required to reduce disturbance and missing period of the data. In this study, time and frequency of outlier occurrence were analyzed for the water level data obtained from national groundwater monitoring stations within the Han river basin in 2000. The analysis results indicated that the most prominent patterns of the outliers were rapid decline for water level, no variation for temperature and steep decline for electrical conductivity. This study provided a sample criterion for determining the outlier for each parameter.

A Study on the Geometric Design Parameters for Optimization of Cooling Device in the Magnetocardiogram System (심자도 장비의 냉각장치 특성 최적화를 위한 기하 설계 변수 연구)

  • Lee, Jung-Hee;Lee, Young-Shin;Lee, Yong-Ho;Lim, Hyun-Kyoon;Lee, Sung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.153-160
    • /
    • 2010
  • A magnetocardiogram (MCG) is a recording of the biomagnetic signals generated by cardiac electrical activity. Biomagnetic instruments are based on superconducting quantum interference devices (SQUIDs). A liquid cryogenic Dewar flask was used to maintain the superconductors in a superconducting state at a very low temperature (4 K). In this study, the temperature distribution characteristics of the liquid helium in the Dewar flask was investigated. The Dewar flask used in this study has a 30 L liquid helium capacity with a hold time of 5 d. The Dewar flask has two thermal shields rated at 150 and 40 K. The temperatures measured at the end of the thermal shield and calculated from the computer model were compared. This study attempted to minimize the heat transfer rate of the cryogenic Dewar flask using an optimization method about the geometric variable to find the characteristics for the design geometric variables in terms of the stress distribution of the Dewar flask. For thermal and optimization analysis of the structure, the finite element method code ANSYS 10 was used. The computer model used for the cryogenic Dewar flask was useful to predict the temperature distribution for the area less affected by the thermal radiation.

Optimized Methods to Maintain Motility and Viability in Normozoospermic Males (정자 운동성 및 수명 보존을 위한 최적 배양에 관한 연구)

  • You, Young-Ah;Mohamed, E.A.;Oh, Shin-Ae;Pang, Myung-Geol
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.36 no.1
    • /
    • pp.45-53
    • /
    • 2009
  • Objectives: To determinate the optimal culture condition to maintain lifespan in human sperm, we evaluated the effect of different temperature on sperm motility and viability up to 5 days in normal specimens. Methods: Ejaculated semen samples with normal semen parameters were gently washed in HEPES buffered Tyrod's-Albumin-Lactate-Pyruvate (HTALP) media. Each 5 ml of HTALP + 0.3% albumin with $1{\times}10^6$ sperm/ml was incubated for 5 days in $37^{\circ}C$, $22^{\circ}C$, and $4^{\circ}C$. The sperm motility and kinematics were analyzed using computer assisted sperm analysis (CASA), membrane integrity was assessed by hypoosmotic swelling test (HOST), and capacitation status was evaluated by chlorotetracycline (CTC) fluorescence pattern. Each parameter was measured on day 1, 3, and 5, respectively. Results: The motility, viability and live/uncapacitated pattern were demonstrated significantly in temperature- and time-dependent difference (p<0.05). While the sperm cultured for 1 day in each temperature was not significantly different, the sperm cell kept in $22^{\circ}C$ after 3 days were preserved sperm motility, viability, membrane integrity, and F pattern better than in other culture temperatures. Conclusions: HTALP can be used a basic medium for culture and longevity preservation, and sperm cell kept at $22^{\circ}C$ is beneficial for assisted reproductive techniques.

Modification of Physico-chemical Properties of Wheat Bran by Twin-screw Extrusion Process -1. Effect of Screw Configuration and Process Parameters on System Parameters- (이축 압출성형 공정에 의한 밀기울의 물리화학적 변형 -1. 스크류의 조합과 공정변수 조절에 따른 시스템 변수의 변화-)

  • Kim, Chong-Tai;Hwang, Jae-Kwan;Cho, Sung-Ja;Kim, Chul-Jin;Kim, Hae-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.404-413
    • /
    • 1995
  • System parameters (extrusion temperature, extrusion pressure, specific mechanical energy, mean residence time) were analysed on three different screw configurations during twin-screw extrusion of wheat bran. Experiments were conducted over a screw speed of $280{\sim}380\;rpm$, feed rate of $22{\sim}38\;kg/hr$ and moisture content of $17{\sim}33%$ using screws assembled with 3, 4, and 5 reverse screw elements (RSE) adjacent to the heating zone of the barrel. Extrusion temperature increased with increasing RSE but it decreased with increasing feed rate and moisture content. Decreasing the filling ratio of the screw resulted in a lower extrusion pressure, and increasing the length of the RSE gave similar results due to the higher temperature and lower viscosity of melted dough. It was also observed that increasing the feed rate and decreasing moisture content resulted in the reduced extrusion pressure. Specific mechanical energy (SME) decreased when the feed rate and moisture content increased, and SME increased when using RSE posses from 3 to 5. Screw configuration posses with 4 RSE yielded the longest RT, and the smaller the die hole, the higher the RT. In contrast, RT decreased when the feed rate increased. With increasing moisture content RT for 3 RSE increased, but that for 4 and 5 RSE decreased.

  • PDF

Predictive model and quantitative microbial risk assessment of enterohemorrhagic Escherichia coli and Campylobacter jejuni in milk (우유에서 장출혈성 대장균과 캠필로박터균의 행동예측 모델 개발 및 정량적 미생물 위해성 평가 연구)

  • Dong, Jiaming;Min, Kyung Jin;Seo, Kun Ho;Yoon, Ki Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.657-668
    • /
    • 2021
  • We prepared the growth and survival models of enterohemorrhagic Escherichia coli (EHEC) and Campylobacter jejuni in milk as a function of temperature and assessed the microbiological risks associated with the consumption of whole milk. EHEC and C. jejuni were not detected in whole milk (n=195) in the retail market. The minimum growth temperature of EHEC in milk was 7℃. The lag time of EHEC in whole milk was longer than that in skim milk. The survival ability of C. jejuni in milk was better at 4℃ than at 10℃. Lower delta values were observed in whole milk than in skim milk, indicating that C. jejuni survived better in skim milk. The probability of foodborne illness from whole milk consumption was 5.70×10-5 for EHEC and 9.86×10-9 for C. jejuni. Sensitivity analysis results show that the market temperature of EHEC and the dose-response model of C. jejuni are correlated with the probability of foodborne illness.

Analysis for Adsorption Equilibrium, Kinetic and Thermodynamic Parameters of Aniline Blue Using Activated Carbon (활성탄을 이용한 아닐린 블루의 흡착평형, 동역학 및 열역학 파라미터에 대한 해석)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.679-686
    • /
    • 2019
  • Characteristics of adsorption equilibrium, kinetic and thermodynamic of aniline blue onto activated carbon from aqueous solution were investigated as function of initial concentration, contact time and temperature. Adsorption isotherm of aniline blue was analyzed by Langmuir, Freundlich, Redlich-Peterson, Temkin and Dubinin-Radushkevich models. Langmuir isotherm model fit better with isothermal data than other isotherm models. Estmated Langmuir separation factors ($R_L=0.036{\sim}0.068$) indicated that adsorption process of aniline blue by activated carbon could be an effective treatment method. Adsorption kinetic data were fitted to pseudo first order model, pseudo second order model and intraparticle diffusion models. The kinetic results showed that the adsorption of aniline blue onto activated carbon well followed pseudo second-order model. Adsorption mechanism was evaluated in two steps, film diffusion and intraparticle diffusion, by intraparticle diffusion model. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy for adsorption process were estimated. Enthalpy change (48.49 kJ/mol) indicated that this adsorption process was physical adsorption and endothermic. Since Gibbs free energy decreased with increasing temperature, the adsorption reaction became more spontaneously with increasing temperature. The isosteric heat of adsorption indicated that there is interaction between the adsorbent and the adsorbate because the energy heterogeneity of the adsorbent surface.

Investigating the Au-Cu thick layers Electrodeposition Rate with Pulsed Current by Optimization of the Operation Condition

  • Babaei, Hamid;Khosravi, Morteza;Sovizi, Mohamad Reza;Khorramie, Saeid Abedini
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.172-179
    • /
    • 2020
  • The impact of effective parameters on the electrodeposition rate optimization of Au-Cu alloy at high thicknesses on the silver substrate was investigated in the present study. After ensuring the formation of gold alloy deposits with the desired and standard percentage of gold with the cartage of 18K and other standard karats that should be observed in the manufacturing of the gold and jewelry artifacts, comparing the rate of gold-copper deposition by direct and pulsed current was done. The rate of deposition with pulse current was significantly higher than direct current. In this process, the duty cycle parameter was effectively optimized by the "one factor at a time" method to achieve maximum deposition rate. Particular parameters in this work were direct and pulse current densities, bath temperature, concentration of gold and cyanide ions in electrolyte, pH, agitation and wetting agent additive. Scanning electron microscopy (SEM) and surface chemical analysis system (EDS) were used to study the effect of deposition on the cross-sections of the formed layers. The results revealed that the Au-Cu alloy layer formed with concentrations of 6gr·L-1 Au, 55gr·L-1 Cu, 24 gr·L-1 KCN and 1 ml·L-1 Lauryl dimethyl amine oxide (LDAO) in the 0.6 mA·cm-2 average current density and 30% duty cycle, had 0.841 ㎛·min-1 Which was the highest deposition rate. The use of electrodeposition of pure and alloy gold thick layers as a production method can reduce the use of gold metal in the production of hallow gold artifacts, create sophisticated and unique models, and diversify production by maintaining standard karats, hardness, thickness and mechanical strength. This will not only make the process economical, it will also provide significant added value to the gold artifacts. By pulsating of currents and increasing the duty cycle means reducing the pulse off-time, and if the pulse off-time becomes too short, the electric double layer would not have sufficient growth time, and its thickness decreases. These results show the effect of pulsed current on increasing the electrodeposition rate of Au-Cu alloy confirming the previous studies on the effect of pulsed current on increasing the deposition rate of Au-Cu alloy.

Development of a Prototype Patient Monitoring System with Module-Based Bedside Units and Central Stations: Overall Architecture and Specifications (모듈형 환자감시기와 중앙 환자감시기로 구성되는 환자감시시스템 시제품의 개발: 전체구조 및 사양)

  • Woo, E.J.;Park, S.H.;Jun, B.M.;Moon, C.W.;Lee, H.C.;Kim, S.T.;Kim, H.J.;Seo, J.J.;Chae, K.M.;Park, J.C.;Choi, K.H.;Lee, W.J.;Kim, K.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.315-319
    • /
    • 1996
  • We have developed a prototype patient monitoring system including module-based bedside units, interbed network, and central stations. A bedside unit consists of a color monitor and a main CPU unit with peripherals including a module controller. It can also include up to 3 module cases and 21 different modules. In addition to the 3-channel recorder module, six different physiological parameters of ECG, respiration, invasive blood pressure, noninvasive blood pressure, body temperature, and arterial pulse oximetry with plethysmogaph are provided as parameter modules. Modules and a module controller communicate with up to 1Mbps data rate through an intrabed network based on RS-485 and HDLC protocol. Bedside units can display up to 12 channels of waveforms with any related numeric informations simultaneously. At the same time, it communicates with other bedside units and central stations through interbed network based on 10Mbps Ethernet and TCP/IP protocol. Software far bedside units and central stations fully utilizes gaphical user interface techniques and all functions are controlled by a rotate/push button on bedside unit and a mouse on central station. The entire system satisfies the requirements of AAMI and ANSI standards in terms of electrical safety and performances. In order to accommodate more advanced data management capabilities such as 24-hour full disclosure, we are developing a relational database server dedicated to the patient monitoring system. We are also developing a clinical workstation with which physicians can review and examine the data from patients through various kinds of computer networks far diagnosis and report generation. Portable bedside units with LCD display and wired or wireless data communication capability will be developed in the near future. New parameter modules including cardiac output, capnograph, and other gas analysis functions will be added.

  • PDF

Diurnal Change in Water Statue of Fruit Tissues During the Growth of Kiwifruit(Actinidia deliciosa) (참다래 과실의 생장에 따른 과실조직의 일중 수분상태 변화)

  • Han Sang Heon
    • Journal of Bio-Environment Control
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • Fruit growth in kiwifruit shows double sigmoid curve, but it does not certainly indicate as years. Therefore, I though the reason to be easy to the effect of water state change in kiwifruit, investigated diurnal change in water status of fruit tissues with an isoipiestic psychrometers against the fruit growth stage of kiwifruit in 1995 and 1996. Diurnal change in the fruit tissue water potential were little, but violent for fruti growth state III in 1996. The potential of two years dropped gradually approach to harvest time. On the other hand, osmotic potential of the tissues indicated to very similar to water potential, dropped rapidly -1.5MPa before dawn, recovered -1 MPa after 3 h on October 14, were -1~-1.7 MPa at the fruit commercial harvest in 1995. It had a tendency to lower in 1996 than in 1995. It was recorded to the minimum air temperature at the first for an autumn in 1995; 13$^{\circ}C$ from the middle night of October 13 to dawn of October 14. Leaves water potential, which is related to water status of xylem, nearly fell below -1 MPa at before dawn from stage II in 1996. However, it fell so low only at commercial in 1995. At the stage II, osmotic potential and ascent of the turgor pressure was high than 1995-fruit. There parameter suggested that three of kiwifruit in 1996 were status of water stress for stage III. The results from this study indicated that difference of fruit growth between 1995-fruit and 1996-fruit was affected by water status of the fruit tissues, which was influenced by weather condition.

  • PDF