• Title/Summary/Keyword: Time-Stepping Finite Element Method

Search Result 52, Processing Time 0.021 seconds

Study on Steady State Analysis of High Power Three-Phase Transformer using Time-Stepping Finite Element Method (시간차분 유한요소법을 이용한 대용량 삼상 변압기의 정상상태 해석에 관한 연구)

  • Yoon, Hee-Sung;Seo, Min-Kyu;Koh, Chang-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1123-1129
    • /
    • 2012
  • This paper presents the fast steady state analysis using time-stepping finite element method for a high power three-phase transformer. The high power transformer spends huge computational cost of the time-stepping finite element method. It is because that the high power transformer requires a lot of time to reach steady state by its large inductance component. In order to reduce computational cost, in this paper, the adaptive time-step control algorithm combined with the embedded 2nd 4th singly diagonally implicit Runge-Kutta method and the analysis strategy using variation of the winding resistance are studied, and their numerical results are compared with those from the typical time-stepping finite element method.

LARGE TIME-STEPPING METHOD BASED ON THE FINITE ELEMENT DISCRETIZATION FOR THE CAHN-HILLIARD EQUATION

  • Yang, Yanfang;Feng, Xinlong;He, Yinnian
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1129-1141
    • /
    • 2011
  • In this paper, a class of large time-stepping method based on the finite element discretization for the Cahn-Hilliard equation with the Neumann boundary conditions is developed. The equation is discretized by finite element method in space and semi-implicit schemes in time. For the first order fully discrete scheme, convergence property is investigated by using finite element analysis. Numerical experiment is presented, which demonstrates the effectiveness of the large time-stepping approaches.

The analysis of induction motor drived by PWM voltage source inverter (PWM 인버터 전압원 구동에 의한 유도전동기해석)

  • Kim, Do-Wan;Gwak, In-Gu;Lee, Hyang-Beom;Park, Il-Han;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.71-73
    • /
    • 1995
  • For the accurate analysis of induction motors driven by PWM-type inverter, a time-stepping finite element method is presented in this paper. Since the PWM-type source voltage is not sinusoidal, the time harmonic method can not be used. Therefore, we used a time-stepping method, where the space harmonics due to the slot structure can be analyzed and each time-step size is determined from each increase of rotor position. As a numerical example, an induction motor of 20 Hp, 3 phase and 6 pole is analyzed. First, numerical results of the time-stepping finite element analysis are compared to those of conventional equivated circuit analysts. Next, the stator current characteristic obtained from PWM voltage source is compared to that from sinusoidal voltage source.

  • PDF

FE Analysis of Hybrid Stepping Motor (HSM)

  • Jang Ki-Bong;Lee Ju
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.39-42
    • /
    • 2005
  • Though full 3D analysis is the proper method to analyze the hybrid stepping motor (HSM), it has weak points in the areas of computation time and complexity. This paper introduces 2D FEA using a virtual magnetic barrier for the axial cross section to save computation time. For the purpose of 2D FEA, the virtual magnetic barrier and equivalent permanent magnet model of HSM are proposed. This result is compared with that of experimental and 3D analysis, considered as a reference result.

Transient linear elastodynamic analysis in time domain based on the integro-differential equations

  • Sim, Woo-Jin;Lee, Sung-Hee
    • Structural Engineering and Mechanics
    • /
    • v.14 no.1
    • /
    • pp.71-84
    • /
    • 2002
  • A finite element formulation for the time-domain analysis of linear transient elastodynamic problems is presented based on the weak form obtained by applying the Galerkin's method to the integro-differential equations which contain the initial conditions implicitly and does not include the inertia terms. The weak form is extended temporally under the assumptions of the constant and linear time variations of field variables, since the time-stepping algorithms such as the Newmark method and the Wilson ${\theta}$-method are not necessary, obtaining two kinds of implicit finite element equations which are tested for numerical accuracy and convergency. Three classical examples having finite and infinite domains are solved and numerical results are compared with the other analytical and numerical solutions to show the versatility and accuracy of the presented formulation.

Correction of the Approximation Error in the Time-Stepping Finite Element Method

  • Kim, Byung-Taek;Yu, Byoung-Hun;Choit, Myoung-Hyun;Kim, Ho-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.229-233
    • /
    • 2009
  • This paper proposes a correction method for the error inherently created by time-step approximation in finite element analysis (FEA). For a simple RL and RLC linear circuit, the error in time-step analysis is analytically investigated, and a correction method is proposed for a non-linear system as well as a linear one. Then, for a practical inductor model, linear and non-linear time-step analyses are performed and the calculation results are corrected by the proposed methods. The accuracy of the corrected results is confirmed by comparing the electric input and output powers.

An Application of Space and Time Finite Element Method for Two-Dimensional Transient Vibration (2차원 동적 진동문제의 공간-시간 유한요소법 적용)

  • Kim, Chi-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.143-149
    • /
    • 2006
  • This paper deals with the space-time finite element analysis of two-dimensional vibration problem with a single variable. The method of space-time finite elements enables the simpler solution than the usual finite element analysis with discretization in space only. We present a discretization technique in which finite element approximations are used in time and space simultaneously for a relatively large time period. The weighted residual process is used to formulate a finite element method for a space-time domain. A stability problem is described and some investigations for chosen type of rectangular space-time finite elements are carried out. Instability is caused by a too large time step of successive time steps in the traditional time-dependent problems. It has been shown that the numerical stability of time-stepping on the larger time steps is quite good. The unstructured space-time finite element not only overcomes the shortcomings of the stability in the traditional numerical methods, but it is also endowed with the features of an effective computational technique. Some numerical examples have been presented to illustrate the efficiency of the described method.

Improved Characteristic Analysis of a 5-phase Hybrid Stepping Motor Using the Neural Network and Numerical Method

  • Lim, Ki-Chae;Hong, Jung-Pyo;Kim, Gyu-Tak;Im, Tae-Bin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.2
    • /
    • pp.15-21
    • /
    • 2001
  • This paper presents an improved characteristic analysis methodology for a 5-phase hybrid stepping motor. The basic approach is based on the use of equivalent magnetic circuit taking into account the localized saturation throughout the hybrid stepping motor. The finite element method(FEM) is used to generate the magnetic circuit parameters for the complex stator and rotor teeth and airgap considering the saturation effects in tooth and poles. In addition, the neural network is used to map a change of parameters and predicts their approximation. Therefore, the proposed method efficiently improves the accuracy of analysis by using the parameter characterizing localized saturation effects and reduces the computational time by using the neural network. An improved circuit model of 5-phase hybrid stepping motor is presented and its application is provided to demonstrate the effectiveness of the proposed method.

Advanced Finite Element Analysis for Linear Viscoelastic Problems of a Hereditary-Type Constitutive Law (유전적분형 선형 점탄성문제의 유한요소법에 의한 효율적 해석)

  • 심우진;이성희
    • Computational Structural Engineering
    • /
    • v.6 no.2
    • /
    • pp.103-114
    • /
    • 1993
  • An advanced time-domain finite element formulation is presented for the displacement and stress analysis of isotropic, linear viscoelastic problems of a hereditary-type constitutive law. The semidiscrete finite element method with linear time-stepping scheme and an elastic-viscoelastic correspondence principle are used in the theoretical development. An efficient treatment of hereditary integral is introduced to improve the numerical accuracy, to reduce the computation time, and to avoid the use of large memory storage. Two-dimensional numerical examples of plane strain and plane stress are solved under the assumption on the material property of being elastic in dilatation and like three-element Voigt model in distorsion, and compared with the analytical solutions and the past numerical results to show the versatility and efficiency of the proposed method.

  • PDF

Finite Element Analysis of Electromechanical Field of a Spindle Motor in a Computer Hard Disk Drive Considering Speed Control Using PWM and Mechanical Flexibility (PWM에 의한 속도 제어와 유연 구조를 고려한 컴퓨터 하드디스크 드라이브용 스핀들 모터의 기전 연성 유한 요소 해석)

  • Jang, Jeong-Hwan;Jang, Geon-Hui
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.9
    • /
    • pp.499-508
    • /
    • 2002
  • This paper presents a finite element analysis of the electromechanical field in the spindle motor of a computer hard disk drive considering the speed control and mechanical flexibility. The driving circuit equation is modified by considering the switching action of PWM inverter, and is coupled with the Maxwell equation to obtain the nonlinear time-stepping finite element equation for the analysis of magnetic field. Magnetic force and torque are calculated by the Maxwell stress tensor. Mechanical motion of a rotor is determined by a time-stopping finite element method considering the flexibility of shaft, rotor and bearing. Both magnetic and mechanical finite element equations are combined in the closed loop to control the speed using PWM. Simulation results are verified by the experiments, and they are in food agreement with the experimental results.