• Title/Summary/Keyword: Time-Domain Analysis

Search Result 2,339, Processing Time 0.027 seconds

Study of central buckle effects on flutter of long-span suspension bridges

  • Han, Yan;Li, Kai;Cai, C.S.
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.403-418
    • /
    • 2020
  • To investigate the effects of central buckles on the dynamic behavior and flutter stability of long-span suspension bridges, four different connection options between the main cable and the girder near the mid-span position of the Aizhai Bridge were studied. Based on the flutter derivatives obtained from wind tunnel tests, formulations of self-excited forces in the time domain were obtained using a nonlinear least square fitting method and a time-domain flutter analysis was realized. Subsequently, the influences of the central buckles on the critical flutter velocity, flutter frequency, and three-dimensional flutter states of the bridge were investigated. The results show that the central buckles can significantly increase the frequency of the longitudinal floating mode of the bridge and have greater influence on the frequencies of the asymmetric lateral bending mode and asymmetric torsion mode than on that of the symmetric ones. As such, the central buckles have small impact on the critical flutter velocity due to that the flutter mode of the Aizhai Bridge was essentially the symmetric torsion mode coupled with the symmetric vertical mode. However, the central buckles have certain impact on the flutter mode and the three-dimensional flutter states of the bridge. In addition, it is found that the phenomenon of complex beat vibrations (called intermittent flutter phenomenon) appeared in the flutter state of the bridge when the structural damping is 0 or very low.

Estimation of Stiffness Limit for Railway Bridge Vibration Serviceability (진동사용성을 고려한 철도교량구조물의 강성한계 분석)

  • Park, Kyung-Rock;Jeon, Bub-Gyu;Kim, Nam-Sik;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.80-85
    • /
    • 2008
  • In general, deflection limit criteria of bridge design specifications have been considered based on static serviceability and structural stability. Dynamic serviceability induced from bridge vibration actually has not been included in the criteria. Thus, it is necessary for comfort limit to be considered in order to check dynamic serviceability on bridge vibration. In this study, the comfort limit of bridge structures based on the RMQ and VDV considering the signal fluctuation effectively and the time duration exposed has been constructed. The comfort limit developed in time domain was verified by using vibration signals directly measured from the existing bridges. Comparing the developed comfort limit with the conventional ones defined in frequency domain, it is shown that the comfort limit developed in time domain would be more feasible for evaluating quantitatively the serviceability due to bridge vibration. Using the Bridge-train interaction analysis program, dynamic response of the bridge by the stiffness change were obtained for several railway bridges. And, a stiffness limit satisfying the bridge vibration serviceability was estimated by compared with comport limit. From the results, a new deflection limit on bridge structures satisfying the vibration serviceability could be proposed by comparing with the conventional deflection limit criteria.

  • PDF

New development of artificial record generation by wavelet theory

  • Amiri, G. Ghodrati;Ashtari, P.;Rahami, H.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.185-195
    • /
    • 2006
  • Nowadays it is very necessary to generate artificial accelerograms because of lack of adequate earthquake records and vast usage of time-history dynamic analysis to calculate responses of structures. According to the lack of natural records, the best choice is to use proper artificial earthquake records for the specified design zone. These records should be generated in a way that would contain seismic properties of a vast area and therefore could be applied as design records. The main objective of this paper is to present a new method based on wavelet theory to generate more artificial earthquake records, which are compatible with target spectrum. Wavelets are able to decompose time series to several levels that each level covers a specific range of frequencies. If an accelerogram is transformed by Fourier transform to frequency domain, then wavelets are considered as a transform in time-scale domain which frequency has been changed to scale in the recent domain. Since wavelet theory separates each signal, it is able to generate so many artificial records having the same target spectrum.

Structural optimal control based on explicit time-domain method

  • Taicong Chen;Houzuo Guo;Cheng Su
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.607-620
    • /
    • 2023
  • The classical optimal control (COC) method has been widely used for linear quadratic regulator (LQR) problems of structural control. However, the equation of motion of the structure is incorporated into the optimization model as the constraint condition for the LQR problem, which needs to be solved through the Riccati equation under certain assumptions. In this study, an explicit optimal control (EOC) method is proposed based on the explicit time-domain method (ETDM). By use of the explicit formulation of structural responses, the LQR problem with the constraint of equation of motion can be transformed into an unconstrained optimization problem, and therefore the control law can be derived directly without solving the Riccati equation. To further optimize the weighting parameters adopted in the control law using the gradient-based optimization algorithm, the sensitivities of structural responses and control forces with respect to the weighting parameters are derived analytically based on the explicit expressions of dynamic responses of the controlled structure. Two numerical examples are investigated to demonstrate the feasibility of the EOC method and the optimization scheme for weighting parameters involved in the control law.

Experimental Study for Modal Parameter Estimation of Structural Systems (구조물의 자유진동특성 추정을 위한 실험적 연구)

  • 윤정방;이형진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.175-182
    • /
    • 1994
  • As for the safety evaluation of existing large-scale structures, methods for estimation of the structural and dynamic properties are studied. Sequential prediction error method in time domain and improved FRF estimator in frequency domain are comparatively studied. For this purpose, impact tests of 2 bay 3 floor steel frame structure are performed. Results from both methods are found to be consistent to each others, however those from the finite-element analysis are slightly different from experimental results.

  • PDF

PROPERTIES OF RANDOM SIGNALS IN WAVELET DOMAIN

  • Lee, Young Seock;Kim, Sung Hwan
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.107-114
    • /
    • 1999
  • In many applications (e,g., identification of non-destructive testing signal and biomedical signal and multiscale analysis of image), it is of interest to analyze and identify phenomena occurring at the different scales. The recently introduced wave let transforms provide a time-scale decomposition of signals that offers the possibility of such signals. However, there is no corresponding statistical properties to development of multiscale statistical signal processing. In this paper, we derive such properties of random signals in wavelet domain.

  • PDF

Parameter Identifieation of Nonlinear Structure (비선형 구조물의 매개변수 규명)

  • 김우영;황원걸;기창두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.363-368
    • /
    • 1993
  • Hilbert Transform has been used for detection of nonlinearity in modal analysis. HTD(Hilbert Transform Describers) are used to quantify and identify nonlinearity. Mottershead and Stanway method for identification of N-th power velocity nonlinear damping are extended to P-th power displacement stiffness, N-th power velocity damping and dry friction. Time domain and frequency domain data are used and HTD and Mottershead methods are combined for identification of nonlinear parameters in this paper. Computer simulations and experimental results are shown to verify nonlinear structure identification methods.

  • PDF

Pitch Extraction of Speech Signals by the Harmonics analysis (고조파 분석에 의한 음성신호의 피치 검출)

  • Kim, Kee-Hee;Choi, Jung-Ah;Bae, Myung-Jin;Ann, Sou-Guil
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1610-1614
    • /
    • 1987
  • The harmonies of the fundamental frequency in speech signal make a minute line spectrum in frequency domain. In this paper, we propose a new algorithm to detect a pitch interval in voiced sound based on the fact that the number of harmonies can represent the period of the pitch in the time domain.

  • PDF

일본ME학회 학술대회 참관기

  • 홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.135-138
    • /
    • 1988
  • In this paper, computerized BEAM was implemented for the space domain analysis of EEG. Trans-formation from temporal summation to two-dimensional mappings is formed by 4 nearest point inter-polaton method. Methods of representation of BEAM are two. One is dot density method which classify brain electrical potential 9 levels by dot density of gray levels and the other is colour method which classify brain electrical 12 levels by red-green colours. In this BEAM, instantaneous change and average energy distribution over any arbitrary time interval of brain electrical activity could be observed and analyzed easily. In the frequency domain, the distribution of energy spectrum of a special band can easily be distinguished normality and abnormality.

  • PDF

A study on the Parameter Identification for a Mechanical Dynamic System Using a Time-Domain Extened Kalman Filter Algorithm (시간 영역에서의 Extended Kalman Filter 알고리즘을 이용한 동적 기계 시스템의 파라미터 추정에 관한 연구)

  • 이용복;김창호;사종성;김광식
    • Journal of KSNVE
    • /
    • v.2 no.2
    • /
    • pp.135-140
    • /
    • 1992
  • The Extended Kalman Filter(EKF) algorithm estimates variables and unknown parameters simultaneously and is applied to parameter identification of linear and nonlinear mechanical systems. In this paper, an EKF algorithm was developed through a computer simulation and then applied to a sealing test system as a practical example. Comparing with the frequency domain analysis, it was proved to be a useful alternative for the parameter identification.

  • PDF