• Title/Summary/Keyword: Time-Delay Compensation

Search Result 244, Processing Time 0.03 seconds

IEC61850 Process Bus Based Distributed Power Quality Monitoring (IEC61850 프로세서 버스 기반 분산형 전력품질감시)

  • Park, Jong-Chan;Kim, Byung-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.13-18
    • /
    • 2007
  • In this paper, authors deal with an application of power quality monitoring using the Sampled Value which is described in the IEC61850 International Standard for substation communication. Firstly, while Merging Unit is designed as a process level device transmitting sensor data, the practical problems such as time delay compensation and optical fiber communication are issued. Secondly, the Sampled Value message which is proper to a power quality monitoring system is presented. Because the power quality monitoring system requests non time critical service comparing to protection and control applications, the Sampled Value service message structure is introduced to improve efficiency. At last, the power quality monitoring server having various power quality analysis functions is suggested to verify the performance of Merging Unit. With the diverse experiments, it is proved that the process bus distributed solution is flexible and economic for the power quality monitoring.

A Study on the Modeling of Step Voltage Regulator and Energy Storage System in Distribution System Using the PSCAD/EMTDC (PSCAD/EMTDC를 이용한 배전계통의 선로전압조정장치와 전지전력저장장치의 모델링에 관한 연구)

  • Kim, Byungki;Kim, Giyoung;Lee, Jukwang;Choi, Sungsik;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1355-1363
    • /
    • 2015
  • In order to maintain customer voltage within allowable limit($220{\pm}13V$), tap operation of SVR(step voltage regulator) installed in primary feeder could be carried out according to the scheduled delay time(30 sec) of SVR. However, the compensation of BESS(battery energy storage system) is being required because the customer voltages during the delay time of SVR have a difficultly to maintain within allowable limit when PV system is interconnected with primary feeder. Therefore, this paper presents modeling of SVR to regulate voltage with the LDC(line drop compensation) method and modeling of BESS to control active and reactive power bi-directionally. And also, this paper proposes the coordination control modeling between BESS and SVR in order to overcome voltage problems in distribution system. From the simulation results based on the modeling with the PSCAD/EMTDC, it is confirmed that proposed modeling is practical tool for voltage regulation analysis in distribution system.

Modeling of EMB (Electro Mechanical Brake) to Emulate Gearbox Fault and Control (기어의 고장을 구현하기 위한 EMB(Electro Mechanical Brake) 모델링 및 제어)

  • Choe, Byung-Do;Hwang, Woo-Hyun;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.33-38
    • /
    • 2012
  • EMB is considered as the next generation braking mechanism because it has simple structure and is environment friendly. However, as other brake mechanisms, EMB should be operated reliably for any operating conditions. EMB should be designed with fail-safe and fault-tolerant control concepts which require robust fault detection algorithms for various possible faults. In the design of fault detection algorithms, it is very difficult to construct faulty conditions in real EMB and thus, simulations are often used to emulate the faulty conditions. In this paper, a simulation tool is developed using the commercial software to emulate gear faults in the EMB mechanism. A backlash compensation algorithm is introduced based on contact point detection because screw backlash causes a delay in clamping force response time.

Fast-Transient Repetitive Control Strategy for a Three-phase LCL Filter-based Shunt Active Power Filter

  • Zeng, Zheng;Yang, Jia-Qiang;Chen, Shi-Lan;Huang, Jin
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.392-401
    • /
    • 2014
  • A fast-transient repetitive control strategy for a three-phase shunt active power filter is presented in this study to improve dynamic performance without sacrificing steady-state accuracy. The proposed approach requires one-sixth of the fundamental period required by conventional repetitive control methods as the repetitive control time delay in the synchronous reference frames. Therefore, the proposed method allows the system to achieve a fast dynamic response, and the program occupies minimal storage space. A proportional-integral regulator is also added to the current control loop to eliminate arbitrary-order harmonics and ensure system stability under severe harmonic distortion conditions. The design process of the corrector in the fast-transient repetitive controller is also presented in detail. The LCL filter resonance problem is avoided by the appropriately designed corrector, which increases the margin of system stability and maintains the original compensation current tracking accuracy. Finally, experimental results are presented to verify the feasibility of the proposed strategy.

Hybrid Sensor-less Control of Permanent Magnet Synchronous Motor in Low-speed Region

  • Yamamoto, Yasuhiro;Funato, Hirohito;Ogasawara, Satoshi
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.301-308
    • /
    • 2008
  • This paper proposes a method of improving the stability in sensor-less control of permanent magnet synchronous motors. The control method for low-speed region is divided into two: One is a high frequency method, which involves a problem of reverse rotation once misdetection of the permanent magnet polarity should occur, and another one is a current drive method, which has a problem that phase and speed oscillations are caused by quick speed changes. Hence, authors propose adoption of the current drive method for the basic control system with added compensation of stabilization by means of the high frequency method. This combination secures stable control with no risk of reversal and less vibration. In addition, authors have also considered a frequency separation filter of a shorter delay time so that current control performance will not lower even when high frequencies are introduced. This filter has achieved simplified compensation using repetitive characteristic through the utilization of the periodicity of high frequency current. Simulation and experiment have been conducted to verify that the stable performance of this system is improved.

Secondary Voltage Control for Reactive Power Sharing in an Islanded Microgrid

  • Guo, Qian;Wu, Hongyan;Lin, Liaoyuan;Bai, Zhihong;Ma, Hao
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.329-339
    • /
    • 2016
  • Owing to mismatched feeder impedances in an islanded microgrid, the conventional droop control method typically results in errors in reactive power sharing among distributed generation (DG) units. In this study, an improved droop control strategy based on secondary voltage control is proposed to enhance the reactive power sharing accuracy in an islanded microgrid. In a DG local controller, an integral term is introduced into the voltage droop function, in which the voltage compensation signal from the secondary voltage control is utilized as the common reactive power reference for each DG unit. Therefore, accurate reactive power sharing can be realized without any power information exchange among DG units or between DG units and the central controller. Meanwhile, the voltage deviation in the microgrid common bus is removed. Communication in the proposed strategy is simple to implement because the information of the voltage compensation signal is broadcasted from the central controller to each DG unit. The reactive power sharing accuracy is also not sensitive to time-delay mismatch in the communication channels. Simulation and experimental results are provided to validate the effectiveness of the proposed method.

A Modified Delay and Doppler Profiler based ICI Canceling OFDM Receiver for Underwater Multi-path Doppler Channel

  • Catherine Akioya;Shiho Oshiro;Hiromasa Yamada;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.1-8
    • /
    • 2023
  • An Orthogonal Frequency Division Multiplexing (OFDM) based wireless communication system has drawn wide attention for its high transmission rate and high spectrum efficiency in not only radio but also Underwater Acoustic (UWA) applications. Because of the narrow sub-carrier spacing of OFDM, orthogonality between sub-carriers is easily affected by Doppler effect caused by the movement of transmitter or receiver. Previously, Doppler compensation signal processing algorithm for Desired propagation path was proposed. However, other Doppler shifts caused by delayed Undesired signal arriving from different directions cannot be perfectly compensated. Then Receiver Bit Error Rate (BER) is degraded by Inter-Carrier-Interference (ICI) caused in the case of Multi-path Doppler channel. To mitigate the ICI effect, a modified Delay and Doppler Profiler (mDDP), which estimates not only attenuation, relative delay and Doppler shift but also sampling clock shift of each multi-path component, is proposed. Based on the outputs of mDDP, an ICI canceling multi-tap equalizer is also proposed. Computer simulated performances of one-tap equalizer with the conventional Time domain linear interpolated Channel Transfer Function (CTF) estimator, multi-tap equalizer based on mDDP are compared. According to the simulation results, BER improvement has been observed. Especially, in the condition of 16QAM modulation, transmitting vessel speed of 6m/s, two-path multipath channel with direct path and ocean surface reflection path; more than one order of magnitude BER reduction has been observed at CNR=30dB.

Inland ASF Measurement by Signal of the 9930M Station (9930M국 로란-C 신호를 이용한 내륙 ASF 측정 연구)

  • Yang, Sung-Hoon;Lee, Chang-Bok;Lee, Jong-Koo;Kim, Young-Jae;Lee, Sang-Jeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.8
    • /
    • pp.603-607
    • /
    • 2010
  • The LORAN system had been used widely and it was an essential navigation aid for ships in the ocean until the GPS is adopted actively. In particular, it was essential functionality for the ships to sail the oceans. According to the advancement of industry, however, the current accuracy of traditional Loran is insufficient for the utilization of harbour approach, land navigation, and the field of survey and timing. Therefore it is necessary that the study on the improvement of the positioning accuracy of Loran. The one of the improving methods is to measure and compensate the propagation time delay between the transmitter and user's receiver, which is called as additional secondary factor (ASF). In this study, we measured the ASF between the Pohang master transmitting station (9930M) and four points where locate within 33 km apart from the transmitting station, using the measuring technique of the absolute time delay without a time of coincidence (TOC) table. As the result of measurement, the ranging error caused by the propagation delay was about 210 m at 33 km, however it can be reduced up to 40 m with ASF compensation.

A Control Algorithm of Single Phase Active Power Filter based on Rotating Reference Frame (회전좌표계를 이용한 단상능동전력필터의 제어이론)

  • Kim, Jin-Sun;Kim, Young-Seok;Shin, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1480-1482
    • /
    • 2005
  • The major causes of power quality deterioration are harmonic current through semiconductor switching device, due to use of nonlinear loads such as diodes rectifier or thyristor rectifiers. In response to this concerns, this paper presents a new control method of single-phase active power filter(APF) for the compensation of harmonic current components in nonlinear loads. In order to make the complex calculation to be possible, the single-phase system that has two phases was made by constructing a imaginary second-phase giving time delay to load currents. In the conventional method, a imaginary-phase lagged to the load current T/4(here T is the fundamental cycle) was made. But in this proposed method, the new signal, which has the delayed phase through the filter, using the phase-delay property of low-pass filter, was used as the second phase. As this control method is applied to the system of single phase, an instantaneous calculation was done rather by using the rotating reference frames that synchronizes with source-frequency than by applying instantaneous reactive power theory that uses the conventional fixed reference frames.

  • PDF

Improving the Accuracy of a Heliocentric Potential (HCP) Prediction Model for the Aviation Radiation Dose

  • Hwang, Junga;Yoon, Kyoung-Won;Jo, Gyeongbok;Noh, Sung-Jun
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.279-285
    • /
    • 2016
  • The space radiation dose over air routes including polar routes should be carefully considered, especially when space weather shows sudden disturbances such as coronal mass ejections (CMEs), flares, and accompanying solar energetic particle events. We recently established a heliocentric potential (HCP) prediction model for real-time operation of the CARI-6 and CARI-6M programs. Specifically, the HCP value is used as a critical input value in the CARI-6/6M programs, which estimate the aviation route dose based on the effective dose rate. The CARI-6/6M approach is the most widely used technique, and the programs can be obtained from the U.S. Federal Aviation Administration (FAA). However, HCP values are given at a one month delay on the FAA official webpage, which makes it difficult to obtain real-time information on the aviation route dose. In order to overcome this critical limitation regarding the time delay for space weather customers, we developed a HCP prediction model based on sunspot number variations (Hwang et al. 2015). In this paper, we focus on improvements to our HCP prediction model and update it with neutron monitoring data. We found that the most accurate method to derive the HCP value involves (1) real-time daily sunspot assessments, (2) predictions of the daily HCP by our prediction algorithm, and (3) calculations of the resultant daily effective dose rate. Additionally, we also derived the HCP prediction algorithm in this paper by using ground neutron counts. With the compensation stemming from the use of ground neutron count data, the newly developed HCP prediction model was improved.