• Title/Summary/Keyword: Time-Cost Optimization

Search Result 719, Processing Time 0.029 seconds

Electricity Cost Minimization for Delay-tolerant Basestation Powered by Heterogeneous Energy Source

  • Deng, Qingyong;Li, Xueming;Li, Zhetao;Liu, Anfeng;Choi, Young-june
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5712-5728
    • /
    • 2017
  • Recently, there are many studies, that considering green wireless cellular networks, have taken the energy consumption of the base station (BS) into consideration. In this work, we first introduce an energy consumption model of multi-mode sharing BS powered by multiple energy sources including renewable energy, local storage and power grid. Then communication load requests of the BS are transformed to energy demand queues, and battery energy level and worst-case delay constraints are considered into the virtual queue to ensure the network QoS when our objective is to minimize the long term electricity cost of BSs. Lyapunov optimization method is applied to work out the optimization objective without knowing the future information of the communication load, real-time electricity market price and renewable energy availability. Finally, linear programming is used, and the corresponding energy efficient scheduling policy is obtained. The performance analysis of our proposed online algorithm based on real-world traces demonstrates that it can greatly reduce one day's electricity cost of individual BS.

Study on Dissimilar Friction Welding Optimization of Heat Resisting Steels for Turbine and Real-Time Quality Evaluation by Ascoustic Emission(I) - FRW Optimization (터빈용 내열강의 이종재 마찰용접 최적화와 AE에 의한 품질 실시간 평가에 관한 연구(I) - 마찰용접 최적화)

  • Park, Hyung-Dong;Oh , Sae Kyoo;Kwon, Sang-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.83-91
    • /
    • 1999
  • Taking a view of joining by welding the IN713C to SCM440 and SCM415 steel in production of turbochargers, the frictin welding process may be utilized as a new approach for joining them of other conventional welding processes. It is because the friction welding has more technical and technical and economic advantages than the other welding processes. As this welding process has the characteristics such as curtaliment of production time and materials and cost reduction, etc.. So, this paper deals with determining the preper friction welding condition and analyzing various mechanical properties of friction welded joints of the super heat resisting steel to alloy stee(IN713C to SCM440 and SCM415). And the in-process real-time weld quality evaluation technique by acoustic emission during friction welding of IN713C to SCM440 and SCM415 steels with higher confidence and relibility has been much required even though it might be the first trial approach for developing it. Then, this first study aimed to develop the optimization of dissimilar friction welding of heat resisting steels (INC713 to SCM440, SCM415) for turbine, considering on strength and toughness.

  • PDF

Maximization in Reliability Design when Stress/Strength has Time Dependent Model of Deterministic Cycle Times

  • Oh, Chung-Hwan
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.1
    • /
    • pp.129-147
    • /
    • 1990
  • This study is to refer to the optimization problems when the stress and strength follow the time dependent model, considering a decision making process in the design methodology from reliability viewpoint. Reliability of a component can be expressed and computed if the probability distributions for the stress and strength in the time dependent case are known. The factors which determine the parameters of the distributions for stress and strength random variables can be controlled in design problems. This leads to the problem of finding the optimal values of these parameters subject to resources and design constraints. This paper is to present techniques for solving the optimization problems at the design stage like as minimizing the total cost to be spent on controlling the stress and strength parameters for random variables subject to the constraint that the component must have a specified reliability, alternatively, maximizing the component reliability subject to certain constraints on amount of resources available to control the parameters. The derived expressions and computations of reliability in the time dependent case and some optimization models of these cases are discussed. The special structure of these models is exploited to develop the optimization techniques which are illustrated by design examples.

  • PDF

Response Time Optimization of DVR for 3-Phase Phase-Controlled Rectifier (3상 위상제어 정류기를 위한 DVR의 반응시간 최적화)

  • Park, Chul-Woo;Joung, Sookyoung;Ryu, Jee-Youl;Lee, Dae-Seup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.195-201
    • /
    • 2013
  • In this paper, we present optimization technique for the response time of DVR (Dynamic Voltage Restorer) and the possible compensation range of voltage dip by the DVR system. To protect 3-phase phase-controlled rectifier from voltage dip, DVR system needs to have optimum response time as an important design factor. Although the fast response time of DVR ensures wider range of voltage dip, DVR controller has so high cost and poor stability. This paper proposes DVR system with optimum response time required for certain intensity of voltage dips and good stability to support possible compensation range of voltage dip. Proposed technique showed optimum response time and good stability for overall system. We believe that proposed technique is reliable and useful in DVR design.

Improved Valve-Point Optimization Algorithm for Economic Load Dispatch Problem with Non-convex Fuel Cost Function (비볼록 발전비용함수 경제급전문제의 개선된 밸브지점 최적화 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.257-266
    • /
    • 2015
  • There is no polynomial-time algorithm that can be obtain the optimal solution for economic load dispatch problem with non-convex fuel cost functions. Therefore, electrical field uses quadratic fuel cost function unavoidably. This paper proposes a valve-point optimization (VPO) algorithm for economic load dispatch problem with non-convex fuel cost functions. This algorithm sets the initial values to maximum powers $P_i{\leftarrow}P_i^{max}$ for each generator. It then reduces the generation power of generator i with an average power cost of $_{max}\bar{c}_i$ to a valve point power $P_{ik}$. The proposed algorithm has been found to perform better than the extant heuristic methods when applied to 13 and 40-generator benchmark data. This paper consequently proves that the optimal solution to economic load dispatch problem with non-convex fuel cost functions converges to the valve-point power of each generator.

An efficient robust cost optimization procedure for rice husk ash concrete mix

  • Moulick, Kalyan K.;Bhattacharjya, Soumya;Ghosh, Saibal K.;Shiuly, Amit
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.433-444
    • /
    • 2019
  • As rice husk ash (RHA) is not produced in controlled manufacturing process like cement, its properties vary significantly even within the same lot. In fact, properties of Rice Husk Ash Based Concrete (RHABC) are largely dictated by uncertainty leading to huge deviations from their expected values. This paper proposes a Robust Cost Optimization (RCO) procedure for RHABC, which minimizes such unwanted deviation due to uncertainty and provides guarantee of achieving desired strength and workability with least possible cost. The RCO simultaneously minimizes cost of RHABC production and its deviation considering feasibility of attaining desired strength and workability in presence of uncertainty. RHA related properties have been modeled as uncertain-but-bounded type as associated probability density function is not available. Metamodeling technique is adopted in this work for generating explicit expressions of constraint functions required for formulation of RCO. In doing so, the Moving Least Squares Method is explored in place of conventional Least Square Method (LSM) to ensure accuracy of the RCO. The efficiency by the proposed MLSM based RCO is validated by experimental studies. The error by the LSM and accuracy by the MLSM predictions are clearly envisaged from the test results. The experimental results show good agreement with the proposed MLSM based RCO predicted mix properties. The present RCO procedure yields RHABC mixes which is almost insensitive to uncertainty (i.e., robust solution) with nominal deviation from experimental mean values. At the same time, desired reliability of satisfying the constraints is achieved with marginal increment in cost.

OPTIMIZING QUALITY AND COST OF METAL CURTAIN WALL USING MULTI-OBJECTIVE GENETIC ALGORITHM AND QUALITY FUNCTION DEPLOYMENT

  • Tae-Kyung Lim;Chang-Baek Son;Jae-Jin Son;Dong-Eun Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.409-416
    • /
    • 2009
  • This paper presents a tool called Quality-Cost optimization system (QCOS), which integrates Multi-Objective Genetic Algorithm (MOGA) and Quality Function Deployment (QFD), for tradeoff between quality and cost of the unitized metal curtain-wall unit. A construction owner as the external customer pursues to maximize the quality of the curtain-wall unit. However, the contractor as the internal customer pursues to minimize the cost involved in designing, manufacturing and installing the curtain-wall unit. It is crucial for project manager to find the tradeoff point which satisfies the conflicting interests pursued by the both parties. The system would be beneficial to establish a quality plan satisfying the both parties. Survey questionnaires were administered to the construction owner who has an experience of curtain-wall project, the architects who are the independent assessor, and the contractors who were involved in curtain-wall design and installation. The Customer Requirements (CRs) and their importance weights, the relationship between CRs and Technical Attributes (TAs) consisting of a curtain-wall unit, and the cost ratios of each components consisting curtain-wall unit are obtained from the three groups mentioned previously. The data obtained from the surveys were used as the QFD input to compute the Owner Satisfaction (OS) and Contractor Satisfaction (CS). MOGA is applied to optimize resource allocation under limited budget when multi-objectives, OS and CS, are pursued at the same time. The deterministic multi-objective optimization method using MOGA and QFD is extended to stochastic model to better deal with the uncertainties of QFD input and the variability of QFD output. A case study demonstrates the system and verifies the system conformance.

  • PDF

Optimization of injection molding process for car fender in consideration of energy efficiency and product quality

  • Park, Hong Seok;Nguyen, Trung Thanh
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.4
    • /
    • pp.256-265
    • /
    • 2014
  • Energy efficiency is an essential consideration in sustainable manufacturing. This study presents the car fender-based injection molding process optimization that aims to resolve the trade-off between energy consumption and product quality at the same time in which process parameters are optimized variables. The process is specially optimized by applying response surface methodology and using non-dominated sorting genetic algorithm II (NSGA II) in order to resolve multi-object optimization problems. To reduce computational cost and time in the problem-solving procedure, the combination of CAE-integration tools is employed. Based on the Pareto diagram, an appropriate solution is derived out to obtain optimal parameters. The optimization results show that the proposed approach can help effectively engineers in identifying optimal process parameters and achieving competitive advantages of energy consumption and product quality. In addition, the engineering analysis that can be employed to conduct holistic optimization of the injection molding process in order to increase energy efficiency and product quality was also mentioned in this paper.

Interative Feedback Tuning for Positive Feedback Time Delay Controller

  • Tsang Kai-Ming;Rad Ahmad B.;Chan Wai-Lok
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.640-645
    • /
    • 2005
  • Closed-loop model-free optimization of positive feedback time delay controllers for dominant time delay systems is presented. Iterative feedback tuning (IFT) is applied to the tuning of positive feedback time delay controller. Three experiments are carried out to perform the model-free gradient descent optimization. The initial controller parameters and duration in specifying the cost function are suggested. The effects of step size, filter function and time weighting function on the performance of the optimized controlled are given. Simulation and experimental studies are included to demonstrate the effectiveness of the tuning scheme.

Optimum Design of Bracket for Satellite Antenna (위성안테나 브레켓의 최적설계)

  • Hwang, Tae-Kyung;Lim, O-Kaung;Lee, Jin-Sick;Lee, Jong-Ok
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.451-455
    • /
    • 2003
  • Major concern in modern industry is how to reduce the time and cost for product efficient production. Among many mechanical parts of a satellite, bracket plays an important role to support the load when the satellite is launched to space. so enough strength and stiffness. A designer could add unnecessary material and strength it so as not to fail when it used. But if mechanical part of satellite is over-designed, cost will rise and it also goes against to the aim of lightness. To achieve lightness and enough strength and stiffness, optimization algorithm should be introduced in design process. In this study, conceptual design of bracket is carried out to increase the performance of satellite. Some parameter which could change the weight of this part are selected as design variables. Total weight of bracket is to be minimized while displacement and stress should not exceed limit. Size optimization is done with 3D solid element and PLBA, the RQP algorithm. The weight of 0.262kg of initial model is reduced to 0.241kg after optimization process, so 9.8% of weight reduction is obtained.

  • PDF