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Iterative Feedback Tuning for Positive Feedback Time Delay Controller

Kai-Ming Tsang, Ahmad B. Rad* and Wai-Lok Chan

Abstract: Closed-loop model-free optimization of positive feedback time delay controllers for
dominant time delay systems is presented. Iterative feedback tuning (IFT) is applied to the
tuning of positive feedback time delay controller. Three experiments are carried out to perform
the model-free gradient descent optimization. The initial controller parameters and duration in
specifying the cost function are suggested. The effects of step size, filter function and time
weighting function on the performance of the optimized controller are given. Simulation and
experimental studies are included to demonstrate the effectiveness of the tuning scheme.
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1. INTRODUCTION

Although the Ziegler and Nichols PID tuning
formula is well known and robust, it is well
documented that the performance of the controller
deteriorates rapidly and may become unstable for
systems with dominant time delay. The predictive PI
controller [1], delay compensated PID controller [2],
and positive feedback time delay controlier [3]
produce good responses for dominant time delay
processes. The performances of these controllers
highly depend on the accurate knowledge of the
system time delay. Most of the times on-line
identification [4-6] and experiments [3] are needed to
derive the open-loop models. However controllers
derived from the fitted models may not produce
optimal responses.

An alternative way to tune a controller is to optimize
parameters of a controller of fixed structure using
information on the closed-loop system and the control
performance will then be optimal. The optimization of
such control performance criterion typically requires
iterative gradient-based minimization procedures. The
major obstacle for the solution of this type is the
computation of the gradient of the criterion function
with respect to the controller parameters. The iterative
feedback tuning (IFT) algorithm presented in
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Hjalmarsson et al. [7] is a model-free gradient descent
algorithm where the cost function gradient can be
obtained by doing some experiments on the closed-
loop process. The implementation of IFT for the
tuning of time delay controllers is therefore
investigated. The weighting functions filter function
in the cost function, step size and duration of
optimization will also be studied. Simulation and
experimental studies are included to demonstrate the
effectiveness of the tuning algorithm.

2. TIME DELAY CONTROLLER

The time delay controller uses a delay element in
positive feedback to tackle the dead time of the
process and a compensator to improve the speed of
response of the processes shown in Fig. 1. The
transfer function of the time delay controller can be
written as

G () = —2)__,
1-e7G,(s)

where G.(s) is the compensator transfer function,
G(s) is a low pass filter and is the time delay of the
controller. The proposed G.(s) and G.(s) are given by

G(S)_l1+Ts
¢ K1+T,s’
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Fig. 1. Process with time delay controller.
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G()_1+Ts

where K is the static gain, T is the apparent time
constant, Ty is selected between 0.1 to 0.5 of T and ¢
is the apparent time delay of the process G(s),

respectively. With the proposed values, the time delay
controller becomes

G,(s)=———1i—, (1
K(1+Tis—e™)

and the process output is given by

C(s) = Ge(HGE) gyt ! D(s)
+ G, (5)G(s) 1+G.()G(s)  (2)
= Hy($)R(s) + Sy(s)D(s),

where C(s) is the process output, R(s) is the reference,
G(s) is the plant transfer function, and D(s) is the
output disturbance. Robustness of the positive
feedback time delay controller for deadtime processes
were presented in [3]. It has been shown that the
closed loop system will still be stable provided the
fitted T is less than twice the system time constant, or
the fitted K is bigger than half the system static gain,
or the fitted 7 is bigger than one-third of the system
time delay.

3. ITERATIVE FEEDBACK TUNING

If the output error signal is defined as
c(t)y=c(t)—c, (1), (3)

where c(f) is the process output response and c(¢) is
the desired process output response, respectively. To
attenuate the high frequency additive noise, the output
error is low-pass filtered to give

C,(s)= F()C(s)» )
where F(s) is a low-pass filter. The control design
objective is to minimize a cost function

J(O) = —E(w(t) HO)R (5)

where E(.) denotes expectation and w(f) is a time
weighting function, with respect to the controller
parameter g=[K T T]T. The standard solution to

the problem is to solve

oJ (6
%% [ (OF, (1)

f(t)) 6)

If the gradient aJ(0) s available, the solution of
00

(6) can be obtained by the iterative algorithm

9i+1:9i_7iR;1M' Q)
06
Here 6 denotes the controller parameter vector & at
iteration i, R; is some appropriate positive definite
matrix (typically an estimate of the Hessian of J(4))
and 3 is a sequence of positive numbers that
determines the step size. (7) is essentially a Newton-
Raphson search algorithm. It typically converges to a
solution of (5) provided that the step size yis chosen
such that j(g )< J(6) and R; is nonsingular [8].
Numerical problems may occur if R; is singular or
close to singular (when the data are not sufficiently
informative or the controller is over parameterized).

3.1. Generation of the gradient signal

In order to obtain an estimate of &/(6) , estimates
oo

of the signal ¢ (1) and its gradient %0 are
‘ 06
needed. One of the obstacle in solving the optimal
controller parameter is the computation of the gradient
9,0 Hjalmarsson et al.[7] showed that the gradient
06
could be obtained by performing some experiments on
the closed loop system. From (3) and (4),

o€, (s) - F(s )8C(S) (8)
o8
and from (2)
() Gls) 9GS O HOMEAON

20 1160w 00 " GGy a0 e

~ G G(s) p, D(s)

(1+G.(s)G(s)) 060 9)
__1 8G()
T G(s) 26

1 &G, (s)(
TG(s) 00

(H()R(s)~ HZ()R(5)— Hy(5)Sy(5)D(s)

Hy(5)R(s) — Hy(s)C(s)):

Since G(s) and 9G.(5) are known functions,
00

from (1)
oG (s) _ 1+7Ts
oK K+Ts—e)
oG_(s) _ s (10
or  K(+Ts—e)
0G,(s) __ (1+Ts)se ™
or  K(+Ts-e )’

and (9) becomes
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Fig. 2. Generation of the change of process output

with.
a
gl(;) _ —%(HO(S)R(S) ~ Hy(s)C(s)),
oC(s) s an
T = H(R() ~ Hy()C(9)
aC(s) . ser _
or B 1+T;)S—e_” (Ho(S)R(S) HO(S)C(S))

Hence the gradient functions of (11) can be obtained
provided Hy(s)R(s) and Hy(s)C(s) are available.
Performing three experiments on the closed loop
system with reference inputs R(s), Rx(s) and Rs(s), the
corresponding output responses are

Ci(s)=Hy(s)R(s) + Sy ()Dy (s), Ri(s)=R(s),
Cy(8) = Hy(9)C1 () + Sp(5)Dy(5), Ry(s)=Ci(s),(12)
Cs(s) = Hy($)R(s) + So(s)D3(s), R3(s)=R(s).

Estimates of Hy(s)R(s) and Hy(s)C(s) can be replaced
by Cs(s) and C(s) and approximations of the change
of output with respect to the change of parameters
vector is shown in Fig. 2.

3.2. Estimation of the gradient and Hessian
With the experiments performed in (12),
estimate of the gradient can be obtained as

o) _1&
20 _N; w(k)c, (k)

acf( ) (13)

where N is the number of data records collected for

oc (k)
00

sampled values of the filtered output and change of

the optimization problem, ¢, (k) and are

output with respect to the change of parameters vector.

A good approximation of the Hessian can be obtained
as

o1& (k) ac, (k) ”
R- L3 [ 0] (14)

3.3. Iterative feedback tuning algorithm
The optimization procedures can be summarized as
follows:

i. Apply relay auto-tuning [3] to obtain initial
values of K, T and 7. Set the sampling time to be
approximately equal to 1/40 of T, T,=0.47,
duration for optimization to be ¢+107, the
weighting function w(k), the filter function F(s),
the step size y and the reference model

—0.5s7
G = :
) =1 02rs
ii. With the controller G(s) in the loop, perform the

three experiments described in (12).
ili. Compute the error signal ¢(¢) using (4) where Cy

(5)=G,($)R(s) and an estimate of 9€(5) using (11).
ol

iv. Filter the error and the change of outputs with the
filter F(s) and obtain samples of ¢ (k) and
dc (k)
06
v. Compute an estimate of the gradient using (13)
and the Hessian using (14).
vi. Update the parameter vector using (7).

vii. 1f J(6)-7(6

6.1) <« a small tolerance, stop the
J(6)

i

algorithm. Otherwise go to ii.
4. SIMULATION STUDIES

Consider the model

o
(s+1)°

The static gain of the process is K=1 and the ultimate
gain and frequency of oscillation of the process are
K.=1.6517 and ®,=0.3249 rad/s, respectively. The
apparent time constant and time delay can be obtained
as [3]

JK2K? -1
T=——u—=4046 sec,

@y

z-tan™! (Ta) )

r=—0 v ¥/ 6836 sec.

@,

G(s) =

The sampling time for the process was set to 0.1 sec,
the duration for optimization was set to 47.3 sec and
the reference model was

-3.418s
G,(s)=———.
1+0.8092s
The effects of the time weighting function w(z), the
step size % and filter function F(s) on the performance
of the algorithm are investigated.
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4.1. Time weighting function

The step size y was fixed at 0.5 and the filter

function F{(s) was set to 1. Weighting functions of the
form

w(t) =1,
w(t) =t,
w(t) =1,

were tested. The tolerance to stop the optimization
procedure was set to 0.005. Fig. 3 shows the
controller parameter vectors and the cost functions for
the three weighting functions at different iterations.
After four iterations, the ratios J/(6,)-J(8,) were all

J(6)
less than 0.005. Fig. 4 shows the performances of the
three final optimal controllers. The performance of the
controller with uniform weighting function gave a
faster response but the overshoot was higher and the
settling time was longer. The performance of the
controller with w(z)=¢" had a lower overshoot but the
settling was faster. The performance of controller with
w(t)=t was between the two.
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Fig. 3. Profiles of the controller parameters and cost

functions.
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Fig. 4. Performances of the three optimal controllers.
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Fig. 5. Profiles of the controller parameters and cost
function with variations over 20% for w(#)=t.

Fig. 5 shows the profile of the controller parameter
vector and the cost function with a weighting function
w(f)=t and initial parameter variation over 20%. After
six iterations, the ratios J(8) —(J )(¢9,~+1) was less than

J6

0.005 and the parameter vector converged to similar
values obtained in Fig. 3.

4.2. Step size

With w(7) set to 7 and F(s) set to 1, step sizes of 0.2,
0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 were tested to test their
convergent rates. Fig. 6 shows the cost functions at
different iterations. Clearly a small step size resulted
with a slow convergent rate. As the step size increased
to 0.7, an optimal solution was reached after three
iterations. The convergent rates using step sizes of 0.7,
0.8 and 0.9 were very similar but the parameter
vectors during the optimization procedures were more
fluctuated when step sizes of 0.8 and 0.9 were used.

4.3. Filter function

If output additive noise appeared in the process, a
filter F(s) is required to attenuate its effect in the
optimization of the cost function J(6). A low-pass
filter of the form

1
1+ als

F(s)=

is suggested where « is between 0 to 0.5 such that the
dynamics of the system could still be maintained and
T could either be the initial estimate obtained from the
relay test or estimate obtained from the optimization
procedures. In this simulation study, 7 was taken as
the initial estimate obtained from the relay test and
different values of & were tried to see their effects on
the optimization results. The variance of the output
additive noise was set to 0.005, w(f) was set to r* and
7 was set to 0.7. Fig. 7 shows the profiles of the cost
functions for different values of a. Clearly the
optimization diverged if « was set to zero. The
performances of the optimized controllers are shown
in Fig. 8. The performances of the controllers with «
set to 0.1 and 0.2 were very similar. As ¢ was further
increased, the first overshoot started to increase
because more and more of the system dynamics were
attenuated by the introduced filter.

Hence a good suggestion for the time weighting
function, filter function and the step size are w(r)=r",
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Fig. 6. Profiles of the cost function with different step
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Fig. 7. Profiles of the cost function with different o.
o=0.2 and %=0.7.

Remark 1: The use of relay auto-tuner for initial
model is optional and is not required by the algorithm.
It is just a means of speeding up the response.

Remark 2: T his method is fundamentally different
from the other methods that approximate a higher-
order system with a first-order with time delay. We are
only interested in the closed-loop response.

5. EXPERIMENTAL STUDIES

The process simulator PCS327 [9] from Feedback
Instruments Ltd. was used to demonstrate the
performance of the tuning technique. The system was
set to the 1 second operating condition and an extra
time delay of 2 seconds was added to the process to
make it delay dominant. From the relay test [3], the
ultimate gain and ultimate period of oscillation were
1.5338 and 11.5649 sec, respectively. The estimated
static gain, apparent time constant and apparent time
delay of the process were given by K=1.0017,
7=2.1469 sec, and =4.1957 sec, respectively [3]. To

0 20 40

Fig. 8. Performances of different optimized controllers
with different c.

26D .
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Fig. 9. Profile of the cost function.

carry out the iterative feedback tuning algorithm, the
sampling frequency was set to 0.05 second, duration
for the optimization was set to 25.7 sec, w(¥) was set
to 7, % was set to 0.7 and a was set to 0.2. The
procedures described in section 3.3 were executed and
a tolerance of 0.005 was set for step vii. After two
iterations, the algorithm stopped and the fitted K, T
and 7 were 0.8874, 2.0458 sec. and 4.4489 sec,
respectively. The profile of the cost function is shown
in Fig. 9. For the estimated ultimate gain and ultimate
period of oscillation, the Ziegler and Nichols PID
controller was given by

Gppls) = 0.9203(1 + + 1.4456s) ~

5.7824s

Fig. 10 shows the initial time delay controller,
optimized time delay controller and the Ziegler and
Nichols PID controller in action. Clearly, the
optimized time delay controller had a faster response
that the initial time delay controller and outperformed
the Ziegler and Nichols PID controller for time delay
dominant processes.
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Fig. 10. Performances of the PID and time delay
controllers on the process PCS327.

6. CONCLUSIONS

Iterative feedback tuning algorithm has been
successfully implemented for the optimization of time
delay controller. The gradient of the cost function can
be obtained by performing three experiments on the
closed-loop process. In setting the step size to 0.7, the
bandwidth of the filter function to 35 times the
estimated system bandwidth, the duration of the
optimization to apparent time delay plus ten times the
apparent time constant and the tolerance to stop the
optimization to 0.005, optimal solution is reached in
two to three iterations. The optimized time delay
controller outperforms the Ziegler and Nichols PID
controller for dominant time delay processes. The
novelty of the tuning technique is that it is model-free,
it could be run in closed-loop operation and optimal
solution could be reached in two to three iterations.
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